Critical Minerals Measurement by LIBS

CR Bhatt^{1,2}; Daniel Hartzler^{1,2}; Dustin McIntyre¹

¹National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown WV 26505, USA; ²NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA

Objective

To develop a laser-induced breakdown spectroscopy (LIBS) system for critical minerals measurements.

Laser Induced Breakdown Spectroscopy

- LIBS is an atomic emission spectroscopy-based analytical technique to obtain qualitative and quantitative elemental information of the materials.
- High-energy laser pulse creates a micro plasma plume on the sample by ablating a very small amount of material.
- ✤ The ablated material dissociates into excited ionic and atomic species.
- The excited atoms/ions present in the plasma emit light at their characteristic wavelengths.
- Spectral analysis of the emission spectrum from the plasma is used to infer the elemental composition of the sample.

LIBS Measurement Systems

(b)

Rare Earth Elements Measurement

- Test samples were collected directly from natural sites.
- ✤ For calibration two different mineral matrices, coal and rock were prepared. Rare earth elements (REE); La and Nd were doped into simulated coal and rock samples with their varying concentration.

Coal Simulant		Rock Simulant	
Coal Mineral Phase (wt.%)	6	Rock Mineral Phase (wt.%)	93
Graphite (wt.%)	94	Graphite (wt.%)	7

Composition of Coal & Mineral Phase Simulant

Compound	Coal Mineral Phase (wt.%)	Rock Mineral Phase (wt.%)
AI_2O_3	14.03	18.90
SiO ₂	17.40	68.48
Fe ₂ O ₃	7.08	3.15
KCI	0.47	3.81
CaCl ₂ ·2H ₂ O	41.43	1.62
MgCO ₃	13.50	2.78
TiO ₂	0.50	0.77
NaCl	5.58	0.49

* Mineral simulant composition represents the average (ash) composition of coal samples (samples with 0–10 wt.% ash) and rock samples (samples with 90–100 wt.% ash) from the given sample set. Metallic elements composing greater than 0.1 wt.% of the ash (average of all samples) were selected to produce the simulants.

Emission Signal Detection

La II 433.4 nm, Nd II 401.2 nm

Goodman 1

3.22

Research & Innovation Center

Science & Engineering To Power Our Future