Methane Detection and Emissions Quantification at Undocumented Orphaned Wells

CATALOG Project

Sébastien Biraud (SCBiraud@lbl.gov)

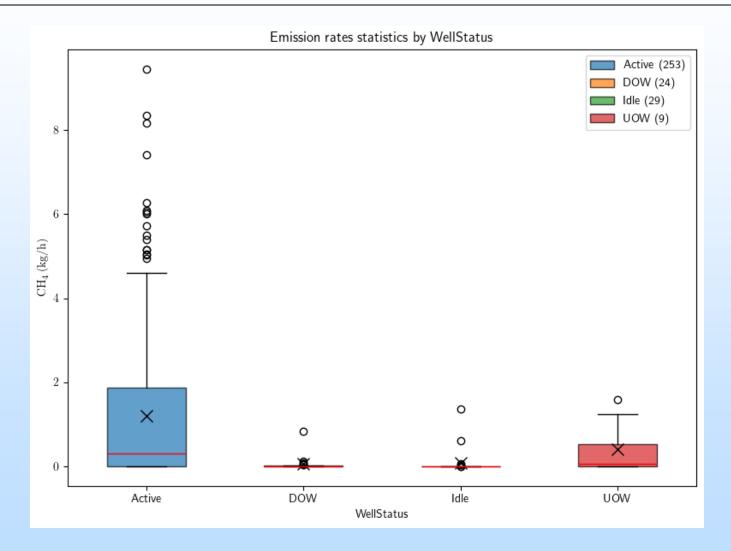
U.S. Department of Energy National Energy Technology Laboratory

Resource Sustainability Project Review Meeting

April 2-4, 2024

Outline

DOE CATALOG Program Priorities


Gaussian Plume Framework

Field campaigns in Texas and Oklahoma

WP1 Objectives

- Provide DOI with <u>accurate, cost-effective methane measurement methods that can be</u> <u>used to report well emission reduction values</u> back to congress as required by the BIL language.
- Most wells are low emitters; large number of emitting wells adds to significant emissions.
- Flow rate is difficult to measurement to make without complex equipment. Concentration is a much simpler measurement to make.
- The low level of emissions from individual wells are a challenge for satellites thus require new technologies.
- Understand methane emission distributions + uncertainties from orphan well populations.
- Understand the temporal component of well emissions and the related uncertainty.

Emission Statistics

field campaigns in CA, NM, OK, PA, NM, and TX. N=315 wells

Outline

DOE CATALOG Program Priorities

Gaussian Plume Framework

Field campaigns in Texas and Oklahoma

Plume Model Framework

Methodology is based on Gaussian Plume Model to estimate emission rates from measurements of:

- CH4 atmospheric concentrations
- 3D wind observations

We assume: y=0 (along the plume centerline) and z=H (source/receptor at same height)

$$C(x, y, z) = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left(-\frac{(z+H)^2}{2\sigma_z^2}\right)$$
 where:

C(x, y, z) is the concentration at the receptor (ppm) Q is the volumetric emission rate (g/hr) u is the wind speed component in the direction of advection (m/s) σ_y is the standard deviation of the horizontal dispersion (m) σ_z is the standard deviation of the vertical dispersion (m) H is the height of the emission source (m) σ_z

Plume Model Framework

Methodology is based on Gaussian Plume Model to estimate emission rates from measurements of:

- CH4 atmospheric concentrations
- 3D wind observations

We assume: y=0 (along the plume centerline) and z=H (source/receptor at same height)

$$C(x, y, z) = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left(-\frac{(z+H)^2}{2\sigma_z^2}\right)$$
 where:

We can then solve for the estimated flow rate (Q_{est}) as a function of time averaged concentration (\overline{C}) and wind speed (\overline{u}) :

$$Q_{est} = \overline{C} \cdot \overline{u} \cdot K$$
, where $K = \frac{2\pi\sigma_y\sigma_z}{\exp\left(-\frac{(z+H)^2}{2\sigma_z^2}\right)}$

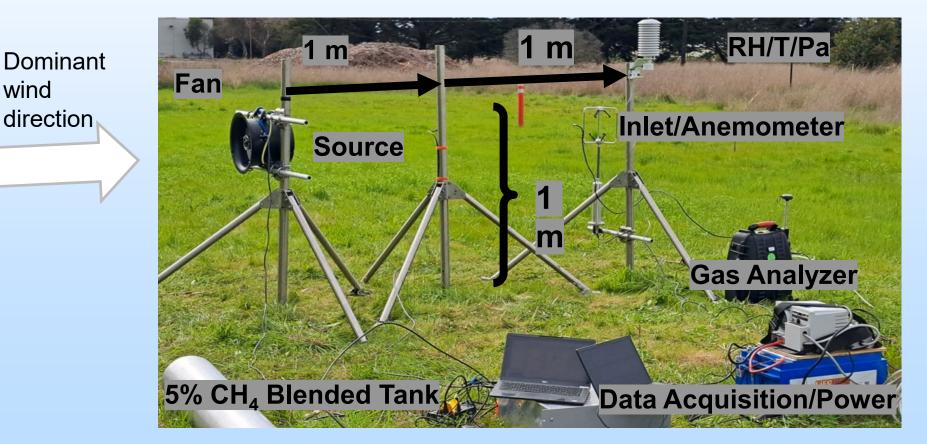
Plume Model Framework

Methodology is based on Gaussian Plume Model to estimate emission rates from measurements of:

- CH4 atmospheric concentrations
- 3D wind observations

We assume: y=0 (along the plume centerline) and z=H (source/receptor at same height)

$$C(x, y, z) = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left(-\frac{(z+H)^2}{2\sigma_z^2}\right)$$
 where:


We can then solve for the estimated flow rate (Q_{est}) as a function of time averaged concentration (\overline{C}) and wind speed (\overline{u}) :

$$Q_{est} = \overline{C} \cdot \overline{u} \cdot K, \text{ where } K = \frac{2\pi\sigma_y \sigma_z}{\exp\left(-\frac{(z+H)^2}{2\sigma_z^2}\right)}$$

measured ???

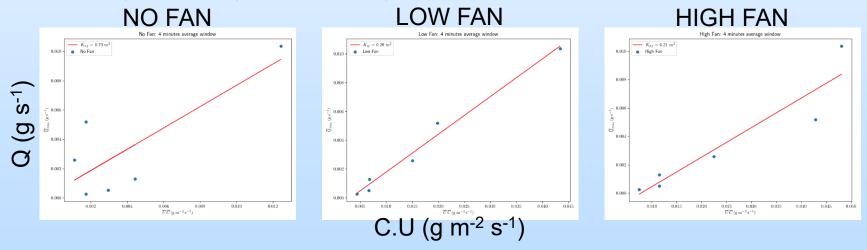
FAST (method) to the Rescue

<u>In contrast to previous studies</u>, we investigated the application of "forced advection" by using a fan to reduce variability in U and C associated with wind conditions (fan is isotropic and leads to the creation of a Gaussian distribution within the flow)

FAST: Forced Advection Sampling Technique (Dubey et al., 2024 – in prep)

FAST Method: Control Release

Control Release Settings


- Range: 1 g/hr to 40 g/hr (using 5% CH₄ tank and diluted with UHP N2).

- Target emission rates: 1, 2, 5, 10, 20, 40 g/hr CH₄

Data acquisition - 5 minutes at 3 Fan settings:

- No Fan
- Low Fan setting ($\sim 3 \text{ m/s}$)
- High Fan setting (~5 m/s)

Data filtered to ignore data with negative wind speed (wrong direction), because of strong winds on day of experiment (1-5 m/s with gusts up to 10 m/s)

Plotting C * U vs. Q_{true} allows us to estimate values of K. With Fan OFF, data fit is poor (R² < 0.01) due td⁰ variability in wind. With Fan ON, we can fit values of K ~ 0.26 (Low Fan) and 0.21 (High Fan)

$$K = \frac{Q_{rel}}{C \cdot u}$$

$$K = \frac{Q_{rel}}{C \cdot u}$$

FAST method: Control Release

Control Release Settings

- Range: 1 g/hr to 40 g/hr (using 5% CH_4 tank and diluted with UHP N2).

- Target emission rates: 1, 2, 5, 10, 20, 40 g/hr CH₄

Data acquisition - 5 minutes at 3 Fan settings:

- No Fan
- Low Fan setting (~3 m/s)
- High Fan setting (~5 m/s)

Data filtered to ignore data with negative wind speed (wrong direction), because of strong winds on day of experiment (1-5 m/s with gusts up to 10 m/s)

Planned Q	Actual Qrel	Xplorobot ⁺
1	0.93	1.66
2	1.86	1.76
5	4.66	2.4
10	9.33	6.2
20	18.67	27.1
40	36.96	37.2

All Q estimates are reported in g/hr [†] <u>https://www.xplorobot.com/</u>

Outline

DOE CATALOG Program Priorities

Field campaigns in Texas and Oklahoma

Field Campaigns: Sensors Tested

- ✓ OGI camera (FLIR, cost: \$80k)
- ✓ In situ High Flow sensor (Heath-SEMTECH, HI-FLOW-II, cost: ~\$50K)
- In situ CH₄ sensors Conc. (Picarro, model: G4302, cost: ~\$45K) + In situ wind sensor (Gill, model: R3-50; cost: ~\$10k)
- ✓ LIDAR (Xplorobot, cost: ~\$150 scanned well)
- ✓ Gas rover (Bascom-Turner, cost: ~\$4.5k)

FAST Method: Reality check #1 (Texas)

<u>Charge</u>: Quantify methane emissions at 11 Documented Orphaned Wells (DOW) before Plugging and Abandonment (P&A)

Location: US Forest Service (Angelina and Sabine Districts)

Timeline: Feb 5-7, 2024

Approach: FLIR / SEMTECH / FAST / XploRobot / EPA (2-point)

FAST Method: Reality check #1 (Texas)

Well ID	FLIR	SEMTECH	FAST *	Xplorobot	EPA ⁺
Arco Fee #2	Not Detected	0.1±0.0	N/A	N/A	N/A
Long Bell #1ST	Not Detected	6.2±5.5	N/A	35	60.2 ±29.8
Long Bell #2ST	Plume in water	3.0±2.1	N/A	16	N/A
Long Bell #3ST	Not Detected	0	N/A	N/A	N/A
Rayburn #2	Not Detected	0	N/A	0	N/A
Rayburn #6	Not Detected	0.3±0.1	N/A	N/A	N/A
Rayburn #7	Not Detected	2.9±0.0	4.9±2.7	3.0	0.5 ±0.3
Rayburn #8	Not Detected	0	N/A	N/A	N/A
Rayburn #11	Not Detected	1.0±0.1	N/A	3	N/A
USA 482 #1	Not Detected	0.1±0.0	N/A	0	N/A
Anonymous Well	Not Detected	6.1±0.7	0.9±1.1	3.3	6.3 ± 7.8

*Setup similar to control release, with sensor geometry adjusted for vegetation.

+Methodology used by Riddick et al, 2024

All Q estimates are reported in g/hr

FAST Method: Reality check #2 (Oklahoma)

<u>Charge</u>: Quantify methane emissions at Documented and Undocumented Orphaned Wells (DOW and UOW)

Location: Osage County

Timeline: March 11-15, 2024

Approach: FLIR / SEMTECH / FAST / XploRobot

All Q estimates are reported in g/hr

Well ID	FLIR	SEMTECH	FAST	Xplorobot
NRU-CHUCK 2A	Detected	215.5±19.6	290	280
NRU-1-11	Not Detected	2.0±0.4	N/A	2.0
LUCY-2A	Detected	1250±197	Saturated	1450
HUMPHREY-5	Not Detected	2.0±0.1	7.8	N/A
HOOPER 41	Not detected	70.1	71.5	N/A

Next Steps

- Forced advection (Fan) enhances results compared to ambient wind conditions (No Fan) ٠
- Uncertainties in emissions, though sizable compared to SEMTECH, remain reasonable for • quick screening
- Further analysis required on wind direction filtering and optimal averaging windows to ٠ improve existing results
- Additional experiments needed to determine wind speed and geometry effects on K values •
- Future work includes validating method with low-cost sensors, in order to bring down cost • and establish standard emission quantification protocol
- Expand the scope of field campaigns to thoroughly validate the method across a spectrum • of real-world scenarios

