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Satellites platforms:

Source #1, 08 Nov 2018

 Pros: can resolve plumes from large sources ‘ R
(>100 kg h") ;* N

- Cons: intermittent measurements (once every ‘ oo oo ool sovets 2
1 to 16 days); can't detect smaller sources.

Drone-based sensors:
* Pros: greater sensitivity and accuracy

- Cons: expensive and labor intensive, and
therefore, intermittent.

Ground-based sensors:
* Pros: Mostly autonomous and continuous

« Cons: Only measure one point or a subset of
points; Cost vs. performance tradeoffs

1. Varon, Daniel J., et al. "Satellite discovery of anomalously large methane point sources from oil/gas production." Geophysical Research Letters 46.22 (2019): 13507-13516.
2. Kairos Aerospace




METHANE EMISSIONS FROM OIL & GAS INDUSTRY AN

Frequently, these are persistent and small emissions...

...but short-duration, high emission events are important.
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Both can be difficult to detect.
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The objective is to capture flashed vapors in
the VRT via the VRU which sends the gas to
the sales line.

Lower
(<26 kg CH, per hour)

Zavala-Araiza, Daniel, et al. "Super-emitters in natural gas infrastructure are caused by abnormal process conditions." Nature communications 8.1 (2017): 14012.




AN

RELEVANT EXPERTISE AND PAST WORK AT SANDIA )

« Sensor Network Optimization - Chama

N\
" comeor Development Cham aﬁ N

- Satellite Expertise

SENSOR PLACEMENT OPTIMIZATION

*  GIS Programming & Visualizations
- Statistical Data Fusion
«  O&G Environmental Compliance & Permitting




CONCEPTUALIZING A SOLUTION
Depends on who you ask?

Need a design tool with agile optimization parameters
B




CONCEPTUALIZING A SOLUTION CONT. \

N\
N\

Infinite possibilities > some design constraints are required.




OVERVIEW OF TECHNICAL APPROACH \
N

How do we evaluate network performance without N
measurements or known emission rates?
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OVERVIEW OF TECHNICAL APPROACH \

Goal: Optimize unconstrained design parameters by N
minimizing the difference between actual and estimated N
emission rates.

Source
Locations s oS

i ‘:
. | |
Gaussian Simulated i\ vork Design ! Lt
Spatially- I Hl Measurement
Plume Model I Parameters ,
Resolved CH, [ , Values
|
a ,‘
Meteorology M e -/

Estimated
Emission
Rates

Inferred
Concentration
Field

Data Source

Fusion Attribution

[ ————

’-- .y




TECHNICAL APPROACH: EMISSION INVENTORY, SOURCES, & \

METEOROLOGICAL DATA

Local Meteorological
Data

Wind Speed
(m/s)
15.50 (1.6%)

10.80 (6.1%)
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5.14 (35.0%)
3.09 (22.6%)
1.54 (0.0%)
0.00 (3.6%)

Facility Locations

Frequency (%)

Emission Factors
(Rutherford et al., 2021)
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TECHNICAL APPROACH: SIMULATED METHANE CONCENTRATION

Steady-State Gaussian Plume Model

Wind speed U
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TECHNICAL APPROACH: INFERRING & FUSING MEASUREMENT DATA

Inferred Point
Measurement
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TECHNICAL APPROACH: SOURCE ATTRIBUTION METHODS

Two Methods

Bayesian Model Inverse Plume Model N\
‘ . 5 ’ Inferred Conc. Field Estimated Emission Rates
" 3.5805 3.5805
3.5795 - 3.5795 =
E 3.5785 ;ﬁ E 3.5785 E
3.5775 3.5775
oBis 288 5-ﬁffM E‘r’;gﬁngi}:i‘“’ o 5'902105 5875 588 s.stjsTsM ééi?jngs(.rﬁs 59 s.goi105
- Quantify uncertainty by calculating the
Quantify uncertainty directly difference between actual and estimated
using known uncertainties emission rate and iterating over many scenarios

(Monte Carlo approach)




TECHNICAL APPROACH: OPTIMAL SENSOR PLACEMENT AN
N\

N

Optimizing ground-sensor placement with Chama \

- Open source sensor network optimization tool developed by Sandia.
« Define optimization metrics (e.g. cost and time to detection) - Optimally placed sensors
- Performed here with mixed sensor types and different budgets

Budget: $250,000 Budget: $1,000,000 Budget: $2,000,000

574500 K
575000 G

00 0 3 575500 3

X 576000 3.69778 X 576000 3.69778 A 576000 3.69778 X - source

* - ground-level sensor ($)
* - flux tower sensor ($$$)




RESULTS: GROUND-BASED NETWORK PERFORMANCE TRENDS

Impact of Sensor Accuracy
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> 25 kg/hr \

- Design .
= Ground-based sensors only

= Located 100 m from each facility at 90°
intervals

= Type/performance unconstrained

« Performance Definitions - “Mean absolute
error” or “percent detected”
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Output | | | |

: . o w0 10w
- Estimated emission rate error and Sensor Accuracy (ppb) Sensor Accuracy (ppb)
detection rate vs. sensor accuracy.

> 10 kg/hr

o]
(=]

Percent Detected (%)
N I 3 >

Mean Absolute Emor (%)

~
o

=2}
(=]

8

[=]




RESULTS: GROUND-BASED NETWORK PERFORMANCE TRENDS

Impact of Standoff Distance

350 85
> 10 kg/hr

> 10 kg/hr
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> 100 kg'hr

Constraints

 Design
= @Ground-based sensors only

= Located at each facility at 90° intervals at an
unconstrained distance

= Sensor accuracy of 0.22 ppb
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 Cost - Unconstrained | | | | | | | | | |
O u t p u t : = Stanlioct))ff Di sta;z[:a (m) o - ; - Stan1dO(())ff Di sta;z[:a (m) - -

« Estimated emission rate error and detection
rate vs. standoff distance.
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RESULTS: GROUND-BASED NETWORK PERFORMANCE TRENDS

Impact of Sensor Density
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RESULTS: PERFORMANCE OF MULTI-TIERED NETWORK AN

. . . 5 : \ % B M \
Impact of Different Tiers: ? e%“ Red - All Tiers (Sat, Ground, & Airborne) \

Using Chama and Inverse Bayesian Model Green -Tiers 2 & 3 (Ground & Airborne) \
. Blue - Only Tier 3 (Ground)
Constraints Black - True Emissions
. D-eSigI;CaIuate different combinations of Tiers: Circle Symb0| - Estimate
 ailtiers ‘ Shading - 95% Uncertainty Bounds I

2. ground & airborne
3. ground only
« Options for high and low cost sensors

« Sensor quantities and locations are constrained
by cost and optimized by chama. " . J i

- Performance - Defined as “time to detection” or
Coverage of Scenarios
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RESULTS SUMMARY AN
N\

- Team investigated a wide variety of sensors from different tiers (ground-based, drones )
and satellites) \

- Developed a framework that can be used to evaluate different designs of a tiered system

- Due to temporal/spatial resolution limits and increasing costs of sensors at different tiers,
it is important to optimize performance from the ground up

« Deployment of optimally placed Tier 3 (ground) sensors can be achieved with Chama to
enhance performance of tiered sensor networks, due to higher fidelity and ease of control

« Provided initial insights on approximate costs vs. performance of ground-based sensors

- Deploying an optimal Tier 3 (ground) sensor network (before addition of drones/satellites)
over the Permian Basin would range between $4.2-13.5 billion

- With a fully integrated sensor network, we demonstrate improved rate quantification with
(much) lower uncertainties from a Bayesian inverse model (as opposed to Tiers 2-3 or 3)

- Monetary cost of including Tiers 1-2 sensors (drones/towers/satellites) is minimized
by maximizing performance of Tier 3 (ground) sensor network




FUTURE DEVELOPMENT

In this project:

- ldentify solutions additional stakeholder requirements

« Impact/value of other Satellite data than TROPOMI and tier 2 measurements
After this project:

- Enhance the evaluation framework to address new requirements

« Continue to improve the technical basis of the framework (e.g. more accurate modeling
tools, more comprehensive sources and sinks, additional instrumentation, etc.)

- Develop a user-friendly beta version of this software and conduct iterative testing
- Pilot study field demonstration for verification and validation.
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