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Mitigation — NETL Approach
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Self-Healing Superhydrophobic
Metallic Coatings Anti-Corrosion Coatings
Electrolyte

NaCl + CO, +H,0
\7 water vapor
PN
A
j
.'i. .:: - >“~w \ ll"
- " o .:
B fi
AN g /

Anode 4 Cathode

Less Noble Metal ' More Noble Metal
ic/Bil lissimil tal © Archite | Metals

i

f“-:/

7

£
3

U.S. DEPARTMENT OF

TL TECHNOLOGY
LABORATORY

Composite Liners

EXPANDED LINER
“eriargmd 1o
whorraton.
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e Sacrificial coatings are used for
corrosion protection.

e Zinc is a common sacrificial
coating.

* However, Zn corrodes too fast in
NG pipeline conditions.

 Can we slow Zn corrosion inside
NG pipelines?

Galvanic coupling
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* Can we form micro galvanic cells
to control Zn corrosion?
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Cold Spray Coating Technology

THE COLD SPRAY PROCESS
SUPERSONIC PARTICLE DEPOSITION
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Coatings | Thickness

428+51 =~0.32%£0.13

304+70 = 0.5+0.28
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* Most forces on coatings during the

pigging process will be: |Product flow
« Wall (compressive) *

. =
* Friction (shear) -

« Testing for shear adhesion and wear
poroperties will determine the viability of Friction F
these coatings to mechanical pigging. :
T = Pmax [MPCZ] (PS|) Fpressure
A Phigh Bypass ’Dlow

Ffriction = .quall
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Shear Adhesion Testing

Shear Adhesion
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* Most forces on coatings during the pigging
process will be friction (shear).

« Shear testing clevises were fabricated, and
results were tabulated for both maximum shear
strength (modified ASTM B 831).

* Fracture surfaces were imaged for elemental
composition on both fracture surfaces.

Adehsion Strenght (psi)

« Shear adhesion appears to correlate with area
fraction of elements left on opposing surfaces.

 Shear adhesion and axial adhesion
measurements were not correlated.

Axial g = }%vuxx
Adhesion A

Sacrificial Cold Spray Coating 0.25 on Steel Surface
Shear .
Adhesion
Steel Pipeline ' l
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Self-Healing Metallic Coatings

Pin-on-Drum Wear Test

« Wear properties of the zinc cold spray
coatings is similar though slightly higher
than pure zinc.

* The wear rate of zinc and the zinc cold
spray coatings is approximately three
times that of the underlying Xé5 pipeline
material.

CW,
PSx

wear = [mmg/ Nm]

W, = mass loss of the test specimen
S, = mass loss of the reference specimen
= density of the test specimen, known or measured to three sig figs g/cm3 (mg/mm?3)

C:S, functions as a normalizing factor).

The value of the constant C for a given reference material and abrasive is determined
from a large number of tests, preferably in several machines and/or locations
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Wear (mm3/Nm)

reference constant equal to the mean mass loss (mg) of the reference pin per unit track
length (m) per unit load (N), for the abrasive type and test parameters used. (The ratio
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HELICAL
WEAR TRACK

' Testing Conditions
l + Abrasive Force, N distance, m
i 150 grit SiC~ 65.47 3.2

PIN-ON-DRUM
ASTM G 132

H X65 HZn ZnCr ZnNb Teflon




Self-Healing Metallic Coatings
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v' Laboratory corrosion test

Pcop = 4 bar, T=40 °C, 3.5 wit% NaCl Galvanized steel
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Z. Belarbi et al., , "Binary Sacrificial Coatings for Internal Corrosion Protection of
Natural Gas Transmission Pipelines,," in ECS Meeting Abstracts MA2022-01-0686. ,
2022.
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v Self-healing properties
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Field Test at NW Natural Gas Storage Facility - TRL5

3x10% 1 Carbon steel coated with ZnCr
0.7 n Zn Zn | —— Before exposure
Probes removed after 32 days of . 0.6 SN Without flow _  Ater 32 daye of exposurehuith flow
0 T . 0 Zn
exposure to natural gas under flow g Bl With flow £ "
0.5 + 3 2x10°+ n
oa k Weight loss <
> . P
1018 R corrosion rate £ .
I - c
€51018 coated L % @ 1¥10% N ]
with ZnCr Co2 f \ = g s g A
N M F s
€51018 coated o i \ 002 0% 002 01 o == g
with Al o & . e, W e 10 20 30 40 50 60 70 80 90 100
CS1018 (CS1018 ZnCr ZnCr ZnNb HDGS Two-Theta (deq)
CS1018 coated p— Zn Lai,2 e
with ZnCr after
32 days of
exposure with
flow

v |
25um

——
25um

25um

Zn Lal,2

CS1018 coated Epo C Kal,2
. Xy
with ZnNb after Corrosuon product
32 days of ZnNb
exposure with
flow €s1018 \, ZnNb
A il B ——l A e el

Zn Lal,2

Galvanized steel
after 32 days of
exposure with
flow

€51018 . Ccs1018

al

SOum

50um

larbi, et al., "Field Testing of Self-Healing Metallic Coatings for Internal Corrosion Protection of Natural Gas Pipelines,"
PP 2023, paper no 18857.

ENERGY




Self-Healing Metallic Coatings — Coated Pipe Test (TRL 6)

A cross-section of

A test ‘ . l { coated pipe
section of
uncoated
. Flow Rate
pIpe

Natural Gas Characteristics
Test duration

Cold spray setup at
VRC Metal Systems

Pipe inner surface

Pipe inner surface
with Zn-Nb top-coat

Pipe length

Initial Final Diamter Deposition/ Total Deposition Target

Dlameter(in.) (In.) Layer [In.) (In.) Deposlition {In.)
0.0017  0.025 0.012-0.016
10.0016 0.014 0.012-0.016
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Field Test Parameters Specification

500 psi to 1000 psi*
Stagnant condition
Untreated (corrosive)
90 days
6 inches
3 feet

Field Test at NW
Natural Gas
Company:

Gas Being Injected
Into Test Sample
Pipe (right of pipe -
Red Hose) to Purge
of Air. Verification
of 100% Gas on

Vertical Vent Pipe

with Gas Detector
(left of pipe),

ll Indicating Air
' Purged.
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TRL Evaluation & Timeline
2019 2020 2021 2022 2023 2024 2025 2026

Coatings were made & tested
TRL2 &3

Lab testing of coatings in
NGI pipeline conditions
TRL4

Field test of coupons in
a live NG pipeline TRL 5

Testing a pipe section coated with NETL’s metallic
coating in pressurized natural gas, under stagnant
conditions pipeline TRL 6

Field test of a pipe section coated with NETL’s metallic
coating a live NG pipeline TRL 7-8
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Three major corrosive species: H,O, CO,, and NaCl

To the best of our knowledge, no existing material can handle all three corrosive species at once.

A multilayer coating was developed, with each layer tackling a specific set of corrosive species.
NaCl + CO, + H,0

\f water vapor

top : superhydrophobic

bottom : corrosion inhibitors
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Evolution of anti-corrosion coatings developed by NETL

Corrosion Resistance Scalability (off the shelf components %)  bestoverall  Fabrication Time
100% 100% 50% 4™ gen 750
. ; '
H,0+CO,+NaCl - 120 — 100 min
°o min
c0min 3rd en uncoated “‘ gen coated
H,0+CO, | ' -| 10min
HO 1 min conosionrates corrotionrate> < 1min
| | | |
corrosion inhibitor ~ gas barrier superhydrophobic  superhydrophobic
+

) ) ) corrosion inhibitor
Anti-corrosion Mechanism
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Improve mechanical property

Improving mechanical property without lowering hydrophobicity (contact angle), which can be critical for surviving the field test.

170
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dragged across a 600 grit sand paper over different distance
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Field test sample preparation and installation TL|iRBOkarory

X65 steel washers were prepared using the new recipe with improved mechanical property.
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Superhydrophobic Anti-Corrosion Coatings

Automation
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A multi-head spraying system was commissioned to automate the fabrication process and improve reproducibility.

The development in coating composition and fabrication process could further improve scalability.

. DEPARTMENT OF

NERGY
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Conclusions and future plan
4th
3 gen e
2"d gen
15t gen Expected

Completion Milestone Description
Date

EY18 EY19 EY20 EY21 EY22 EY23 EY24 EY25 EY26

Complete fabrication and corrosion testing of at least
two steel coupons with defect-free multilayer coatings.

TRL3 > 09/30/2020

TRLA > 03/31/2021 Demonstrate a defect-free, corrosion resistant

multilayer coating under continuous CO, bubbling.
TRLS
03/31/2022

/1

TRL6 > Demonstrate a coated sample that can reduce the
)l A28 corrosion rate of carbon steel (API 5L X65 grade) to

< 0.01 mm/year in a live natural gas pipeline.

/ / TRL7 > Passed the internal invention review board;

Demonstrate a multilayer superhydrophobic corrosion-
protective coating that can reduce the corrosion rate
of carbon steel (API 5L X65 grade) to < 0.1 mm/year
under realistic conditions in the laboratory .

7 7 filing a patent application
lab scale engineering scale /
fiold . ) . full scale Goal: simple, scalable, strong, and cost effective
lela testing field testing
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Composite liner for mitigating pipeline corrosion and gas
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Liner prototype development with collaborators — Progress and ongoing efforts
EXPANDED LINER INSTALLED LINER
(@) oo cemorare - Logacy Ppo ®)
Outer Polymer Thicteress
oceanit

OAK RIDGE

National Laboratory

Sensors

® In-pipe Multi- @ Internal ® Ecernal @ 7, Strairv/ @ Gas Leak
parameter Corrosion Comosion Pressure Sensor
Sensor Sensor Sansor Sensor

An illustration of sensor-embedded composite liner.
(a) Expanded view showing the individual layers of the liner.
(b) The liner is shown in the existing pipe after installation. (c) Installation process.
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Composite liner for mitigating pipeline corrosion and gas

permeation

Inner layer development with collaborators — Progress and ongoing efforts

Collaborating with Oceanit to
develop inner polymer layer for
corrosion resistance

Polyurethane-based “Oceanit A”
coating outperformed alternative
coatings

« Lower corrosion rate

« Higher bonding strength

Oceanit A coating of 16 — 20 um
thickness selected as inner layer
material
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Minimal
delamination
observed on
Oceanit A
coating after
peel test

Significant
delamination
observed on
BarRust 236
commercial
epoxy coating
after peel test




Composite liner for mitigating pipeline corrosion and gas
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Middle layer development with collaborators — Progress and ongoing efforts

Collaboration with ORNL
« Improve scalability of Al
foil ultrasonic welding to
form liner with pipe

1. Spray coat polymer onto Al foil and leave 2. Fold it into hollow shape
g e O m e 'I' ry an uncoated region.
. .
» Pressure testing of liner y 4 . O‘
p ro -I- O Ty p e 3. Continuous USW welding 4. Fold the welded region, and coat the outer polymer layer

Welding fests ongoing o @ G e[

@ Inner polymer

improve flexibility of joined Al
layer using thinner/softer foil

Experimental rig suitable for
pressure testing liner _
orototype ETA Q3 2024 Schematic of pressure test setup

( low-pressure He)
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(a) Overview of the ultrasonic welding joint.
(b) Front view of the joint.
(c) Back view of the joint.

(a) A 1-foot long, 6-inch and 8-inch diameter pipe-shaped liner prototype.
(b) A liner prototype with the inner polymer layer integrated.




Composite liner for mitigating pipeline corrosion and gas
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Outer layer development with collaborators — Progress and ongoing efforts

« Collaborating with DBTech to
develop outer polymer layer
for mechanical strength

« Evaluating feasibility of two
elastomeric resin-infused
carbon fiber composite layer
designs

* Pre-cured (cured at plant)
* Prepreg (cured in field via
stfeam treatment)

« Demonstrated resin
adherence to Al foil layer
prevents creasing when
folded

Resin-infused Adherence of resin to middle Al foil layer imparts
biaxial carbon minimum bending radius, preventing creasing
filber composite when folded

layer




Composite liner for mitigating pipeline corrosion and gas
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Hydrogen permeation testing of liner materials — Progress and ongoing efforts
* No hydrogen permeation
through welded foil
detected at pressures up to _ @ _ - — =t permeate
145 PSIG > ‘3 i
Membrane =1 ‘l i l‘ o ‘
—— «—— Alumina Barri Membrane
 Seamless and welded foils ===~ === PO::,::u:pof,r H2 acswz
had comparable rates of I @ | ) g
pressure increase e —

Porous Stainless-

Membrane Ahiadnn:  Sted

e Future efforts will focus on
permeation testing of
welded foils and foils with
omniphobic coating at
higher pressures (1000




Composite liner for mitigating pipeline corrosion and gas
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FEA simulation of liner stress/strain state during operation — Progress and ongoing efforts

e Preliminary Ansys
simulation results
predict stress/strain of Axial stress in 3D
pressurized liner

e Future efforts will
characterize
performance of liner
under different
operating conditions Hoop stress in 3D
and stresses associated
with storage,
installation, etc.
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ZOZlTRL ) 2022 2023 2024 2025 2026 2027

Proof of concept TRL 3-4

Liner validation in lab
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Selt-Healing Superhydrophobic Composite Liners
Metallic Coatings Anti-Corrosion Coatings oo e
Electrolyte T Outer Potymer

LBL Coating

NaCl + CO, +H,0 EporyPare

Anode Cathode

Less Noble Metal I More Noble Metal
o Z tals. © Poma Architectural Metals
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