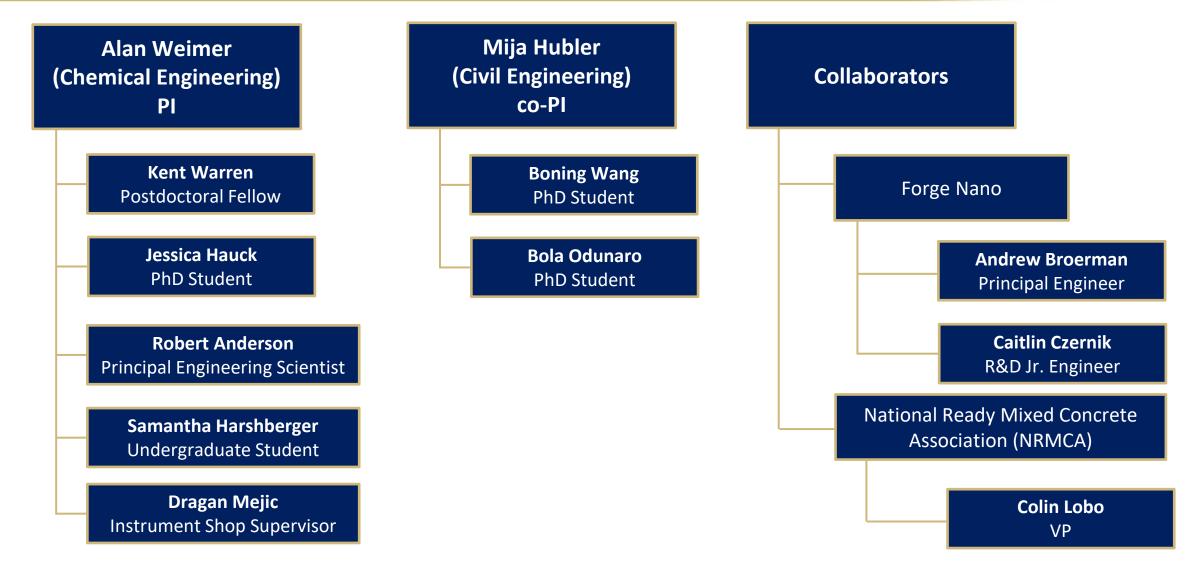
G

Modular Processing of Flare Gas for Carbon Nanoproducts

DOE Project Award Number: DE-FE0031870


PI: Alan W. Weimer (Chemical and Biological Engineering) Co-PI: Mija Hubler (Civil Engineering)

Jessica Hauck, Kent Warren, Boning Wang, Robert Anderson, Bola Odunaro, Samantha Harshberger (University of Colorado – Boulder) Caitlin Czernik, Andrew Broerman – Forge Nano (Thornton, CO) Colin Lobo – NRMCA (Alexandria, VA)

> U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 3rd, 2024

Project Overview: Team

Overview: Year 4 of 4-Year Project (NCE)

Timeline

Project Start Date: 5/1/2020 Project End Date: 9/30/2024

% Complete: 80%

Technical Barriers Addressed

B. CVD is Carried Out.D. Module OperationF. Optimal cement mix design parameters will be identified

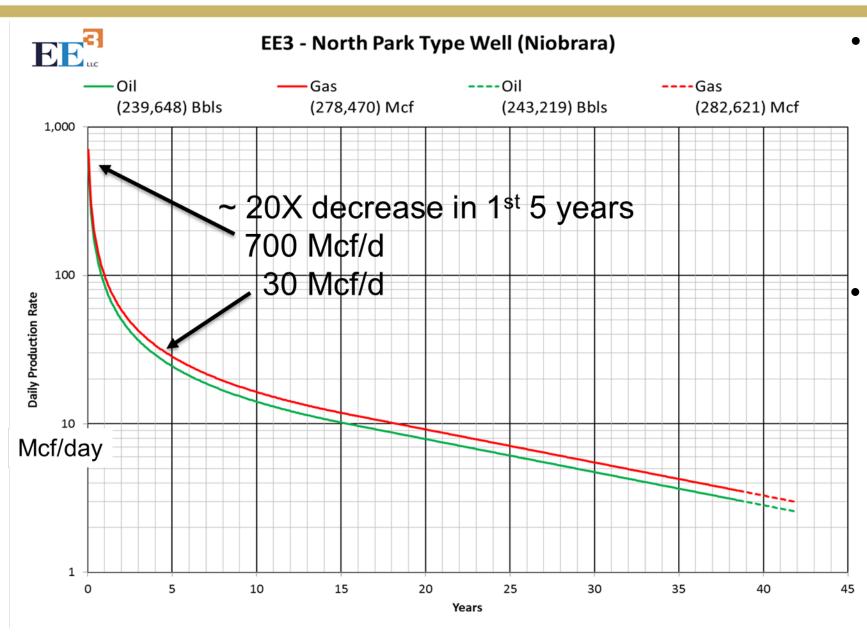
Budget

Total project funding: \$3,750,000 Sub-contract: \$750,000

Collaborators

ForgeNano, Thornton, CO

Reactor/process design and technoeconomic analysis


National Ready Mixed Concrete Association

(NRMCA), Alexandria, VA

Concrete materials, mix design, and consulting

Project Overview: Overall Project Objectives

Develop a **low-cost, scaleable, & distributed** process to **reduce carbon emissions** while **providing** for a valuable **carbon nanoproduct (CNP)**

Sequester CNP in ultra-high performance concrete (UHPC) – improving crack resistance/increasing lifetime

- GHG reduction:
 - sequestration
 - less concrete

Approach – CVD using "Sacrificial Catalyst"

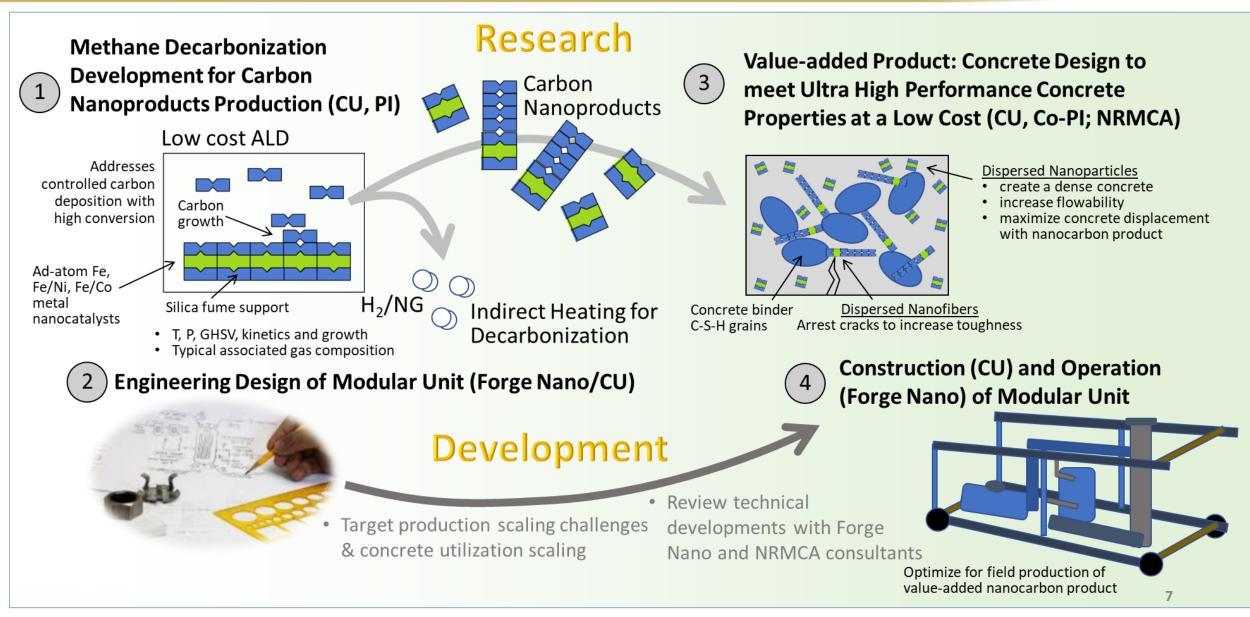
Process Challenges				
Process	Wall Deposition Challenges	Carbon Separation Challenges	Scalability Challenges	Typical Temperature Range (°C)
Direct Thermal Cracking	Yes	No	Yes	> 1500°C
Plasma Assisted	Yes	No	Yes	> 2000°C
CVD	No	Yes	No	600 – 800°C
Laser Ablation	No	No	Yes	
Arc Discharge	No	No	Yes	
Molten Metal	No	Yes	Probably	> 1000°C
Molten Salt	No	Yes	Probably	600-800°C
This Research	Νο	Νο	Νο	600-800°C

Instead of separating CNPs from a catalyst support after synthesis:

- use silica fume as the support;
- highly dispersed ALD
 nano-metal catalyst
- avoid separation costs;

avoid health and safety issues of handling carbon nano fibers, etc.;
use combined product as a crack-bridging additive in concrete

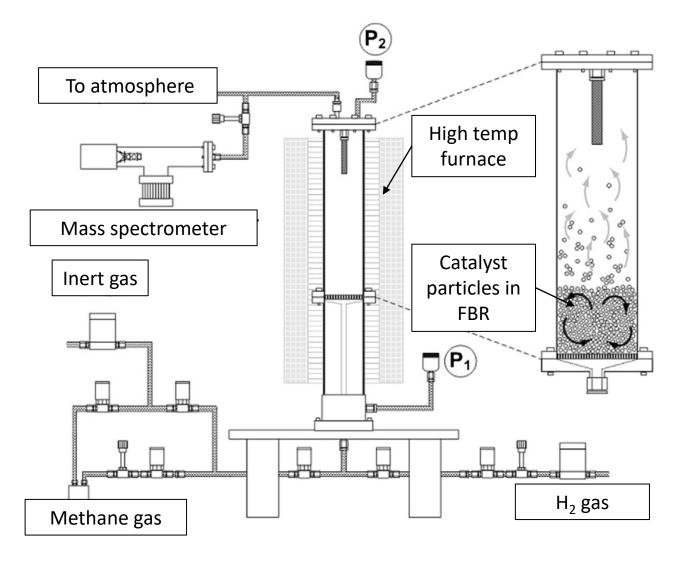
Technical Background: CNPs in Concrete



- The fracture process of concrete starts at the nano-scale. The **addition** of **CNPs** acts through **a bridging effect** after cracks appear.
- Previous research¹ has stated that as the content of CNF increased from 0 to 0.3 wt.% of binder, the tensile strength increased by 56%.
- Advantages: Potential improvement in crack resistance performance of UHPC
- Challenges: An efficient and economic dispersion of CNPs in the cement paste

Experimental study is applied to **establish the cement design relationships to hydration, cracking, and ductility**.

Technical Approach



Technical Approach: Fluidized Bed Reactor

$CH_4 \rightarrow C + 2H_2$ $\Delta H = 74.85 \text{ kJ/mol}$

Key Process	Parameters
Catalyst ALD fabrication	Ex-situ
Catalyst Support	Silica fume
Catalyst Metal	Transition metal (Ni, Fe)
Pressure Range Explored	0 – 500 psig
Temperature Range	500 – 800°C
Scale-up	Modular process
Carbon Nanoproduct Application	Ultra-high performance concrete

Progress: CVD is Carried Out

Catalyst Synthesis

- 750g of catalyst (mass substrate + nickel) have been synthesized and delivered to CU Boulder
- Another 6kg have been synthesized for CVD module operation
- Construction of large-scale catalyst synthesis module is completed

Sample ID #	Ni Loading (wt%)
FN0403_4_3	5.1
FN0403_4_4	4.7
FN0403_4_5	5.0

	Labview TMA N2 - Li	Current	
1x10 ⁻⁰¹		LIVE 3/22/2022 11:32:12	
		Channel	Value
1x10 ⁻⁰²		Mass 2	3.41e-007
1x10		Mass 1	6 7.98e-008
		Mass 1	8 1.34e-007
		Mass 2	8 -2.14e-008
1x10 ⁻⁰³		Mass 3	2 -1.77e-007
		Mass 3	9 1.38e-004
	يروا الجرجيني المسترية الماليس اليوني ويرافي المتحال التي المتحال التي المتحال	Mass 4	0 3.04e-004
	۲۰۰۳٬۰۰۰٬۲۰ ۲۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬	Mass 4	-6.07e-008
1x10 ⁻⁰⁴		Mass 5	i8 -1.70e-007
		Mass 6	0 -2.20e-007
		Mass 6	i6 -1.62e-007
1x10 ⁻⁰⁵		Mass 9	-1.86e-007
1x10		Mass 9	7 -1.66e-007
1x10 ⁻⁰⁸			
and spitter	And and a second se		
1x10 ⁻⁰⁷	Stelland Abliktation states		
1x10 ⁻⁰⁸			
10:	30:00 10:45:00 11:00:00 11:15:00 11:30:00 11:45:00 12:00 Time	:00 12:15:00	

Mass spectrometer trace during synthesis. The signal on M/Z=66 (yellow, likely cyclopentadiene) dropping to ~0 torr was used to determine when all nickelocene had been consumed

1-cycle Particle ALD

Progress: CVD is Carried Out

Constants

 $X_{CH4} = \frac{Q_{CH4,in} - Q_{CH4,out}}{2}$

150

Time (min)

200

250

300

 $Q_{CH4,in}$

- Weight hourly space ٠ velocity: 18 L_n/g_{cat} ·h
- Reaction Time: 5 hr •
- P_{CH4}:P_{H2} 2:1 •

0.9

0.8

0.7

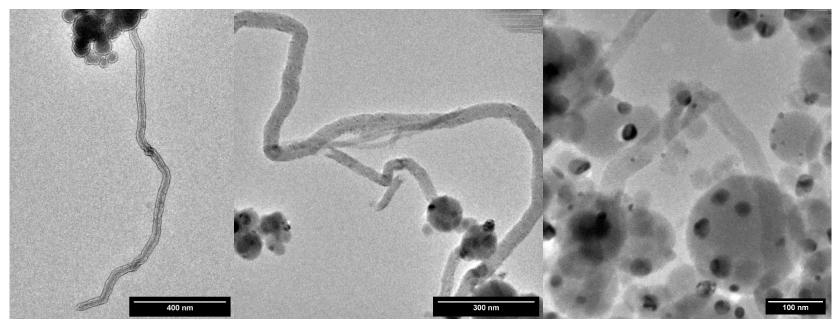
0.6 0.5 0.4

0.3

0.2

0.1

0


0

50

100

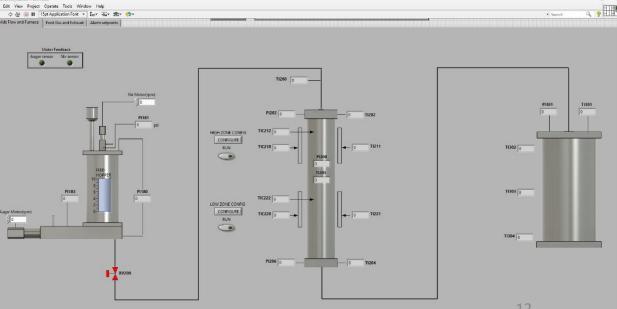
CVD Temp: 550°C •

Factor	High Value (+1)
Reduction Step	500°C 1 hour 50% H2, 50% Ar
Methane Concentration (P _{CH4})	16.7%
Carbon content (wt%)	31.8wt%

Carbon filaments contain L:D >10

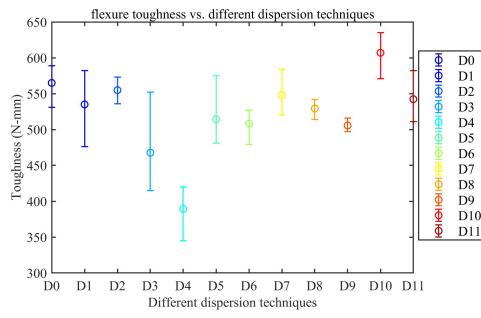
Progress: Module Operation

Forge Nano, located in Thornton, CO, has multiple lab facilities and over 80 employees.


Progress: Module Operation

Modular skid has been constructed and installed at Forge Nano. *Commissioning and startup underway*.

Progress: Mix design and dispersion of CNFs


Optimized UHPC-CNFs mix design (wt.%)

w/c	Cement	Water	Sand	SF	HRWR	CNFs
0.18	35.83	6.45	49.50	6.63	1.55	0.04
		Co	mmerical	CNEcusod	DP_10_VT_	DS (\$171/lb)

Commerical CNFs used: PR-19-XT-PS (\$174/lb)

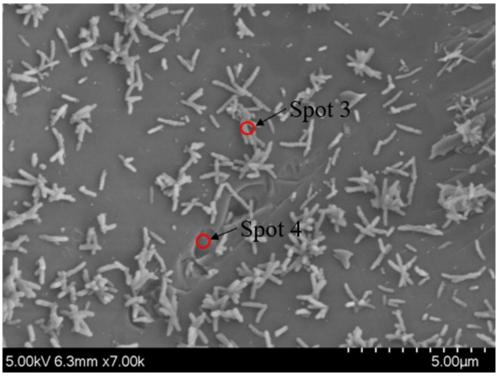
Various CNF dispersion methods considered (methods D0 –D11):

Premixing wet ingredients, premixing dry ingredients, Methylcellulose addition, low speed stirring, high speed stirring, ultrasonic dispersion, polyacrylic acid addition and combinations.

Premixing

Ultrasound dispersion

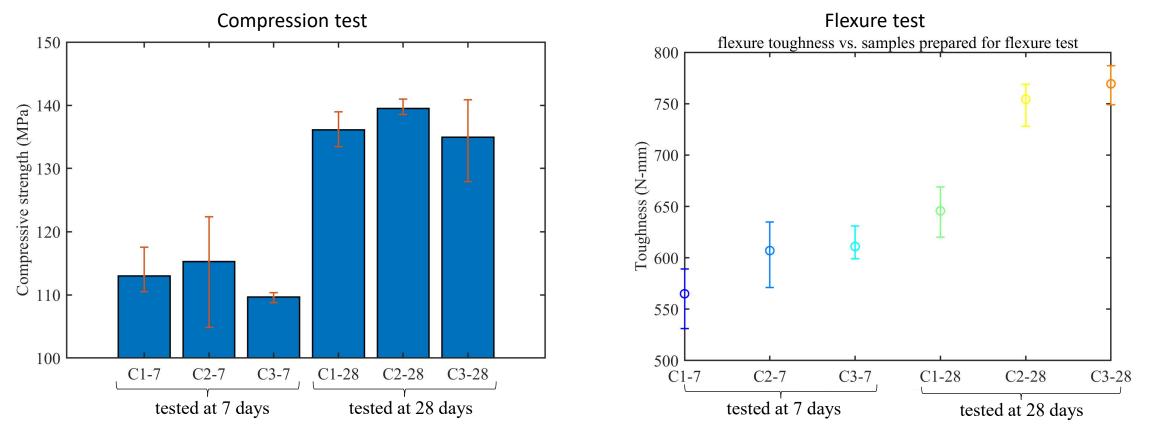
- Dispersion method D10 showed the best performance in terms of toughness improvement.
- This method involves premixing CNFs with water and part of the liquid admixtures, using a highspeed magnetic stirrer for 10 min, then running ultrasound dispersion for 10 mins.



Progress: CNF Dispersion Confirmation in UHPC-CNF

Visual confirmation of successful dispersion with SEM

SEM Image of a welldispersed UHPC-CNFs sample


- SEM shows fibers are well-dispersed with dispersion method D10.
- Images of poorly-dispersed CNFs show large-scale bundles of fibers.
- FIB-FESEM and EDS of Spot 3 and Spot 4 were used to confirm white features are single CNFs.

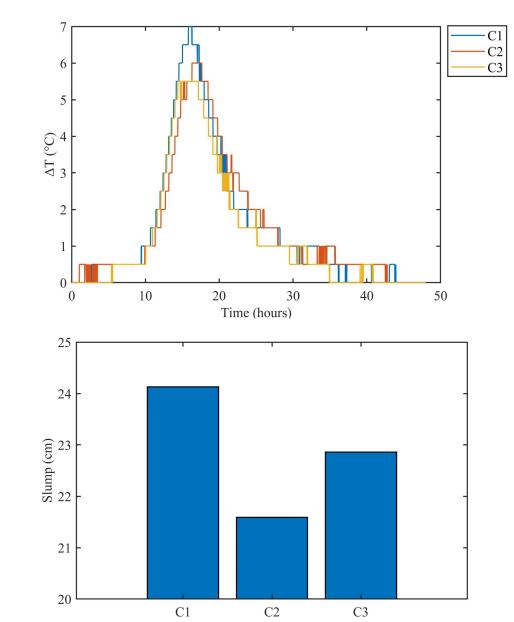
Progress: Optimize CNF addition amount

G

Samples with different CNF ratios tested at 7 days and 28 days

Specimen	Description
C1-7/28	Control Sample : UHPC only; cured for 7/28 days.
C2-7/28	UHPC-CNFs; HRWR:CNFs=5:1 for dispersion; cured for 7/28 days.
C3-7/28	UHPC-CNFs; HRWR:CNFs=10:1 for dispersion; cured for 7/28 days.

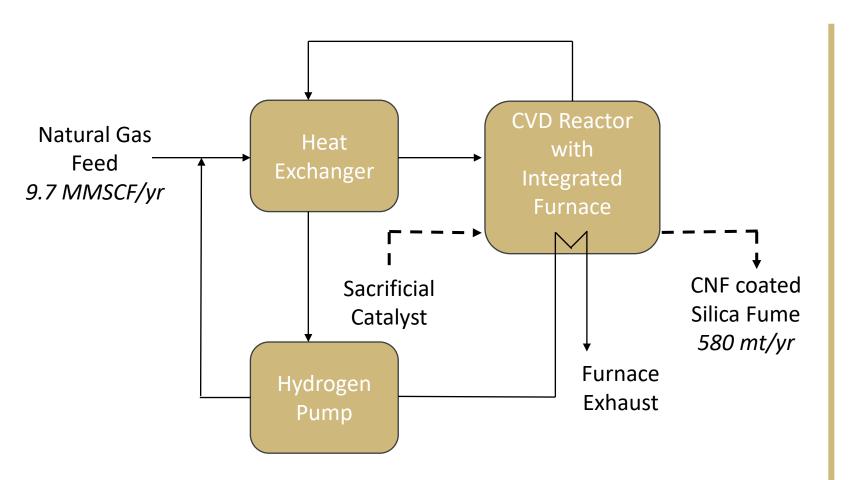
• A High Range Water Reducer (HRWR):CNF ratio of 10:1 showed the highest Flexure Toughness



CNF impact on Hardening Rate assessed by Heat Evolution

• All samples reached the peak in hydration in similar time after mixing

Maturity test


CNF impact on Concrete Flow by Slump

 Minimal change in set time and slump can be addressed with commercial admixtures. Research in progress

Progress: TEA

Parameters

NG cost: Free IRR: 25% Lifetime: 15 years Estimated TDC: \$1M-2M Cost of Capital: 8.5%

Results

CNF/CNP coated silica, price range: < *\$4 per kg* Pure CNF, price range: < *\$20 per kg* Pure CNF, current technology: ~*\$280 per kg* (bulk quote)

Future Work

Lab-Scale CVD	Modular Skid System	Concrete Mix Designs					
 Additional lab-scale CVD studies to inform modular operation. Continue to investigate impact of catalyst metal loading & CVD processing conditions on ultimate CNP performance in concrete 	 CVD will be carried out to produce carbon nanoproduct (CNP) at 1kg /hr. Modular system performance will inform the final commercial path assessment of this technology & supply larger scale product for concrete testing. 	 Tests introducing the CNP synthesized from the skid system in UHPC will commence. 					

Potential Technical Work Beyond Current Project

CVD solid carbon production	Concrete	Additional Markets for Carbon						
 Catalyst optimization M loading/type Natural gas feed Design of deployable skid Catalyst manufacturing scale up (1-cycle spatial ALD) 	 Mix optimization in conjunction with catalyst optimization Increase carbon fraction in concrete 	 Develop understanding of Carbon Fiber properties Conductivity (H & E) Strength Corrosion resistance Optical Other carbon structures Amorphous 						
 Alternative catalyst substrates 		GraphiticTubes (single/multi)						

Potential Commercialization Work Beyond Current Project

CVD solid carbon production	Concrete Market	Additional Markets for Carbon						
 Identify customers for wellhead located skid Logistics Refine TEA, GHG, Energy efficiency analyses Collaborate with well head owner 	 Collaborate with concrete producer Improve market understanding Coated silica Product specs Concrete specs Identify customers Product spec optimization 	 Market Assessment Battery raw materials Carbon black Additive manufacturing Polymer Reinforcement Others? 						

Outreach and Workforce Development Efforts

- Outreach
 - Undergraduate Research Opportunities Program (UROP) Undergraduate Mentoring
 - Discovery Learning Apprenticeship (DLA) Undergraduate Mentoring
 - Social Justice in Science (SJS) Graduate Student Led Discussion/Book Group
 - *Elementary Arts Lab* workshops for elementary school students and resources for teachers to explore scientific concepts through art, dance and music
 - Arrupe Jesuit High School Corporate Work-study Program internship program for underserved high school students in Denver to gain STEM job experience

Workforce Development

- Training graduate students, including Jessica Hauck (Chemical Engineering), Boning Wang (Civil Engineering), Bola Odunaro (Civil Engineering)
- Training undergraduate students, including Samantha Harshberger (Chemical Engineering)
- Training Postdoctoral Associates, including Kent Warren (Chemical Engineering) and Linfei Li (Civil Engineering)

Project Summary

Particle ALD & CVD

Lab Scale and Modular Operation

- CVD was carried out in labscale system on ALD catalyst – target carbon yields achieved.
- Modular skid has been constructed and installed at Forge Nano
- Commissioning and startup underway.

Concrete mix design using commercial CNFs

- The optimal dispersion of CNFs and mix design of UHPC-CNFs were delivered with an improvement of tensile ductility (8% flexure toughness)
- With 0.1 cwt% CNFs added, the slump decreased up to 10%
- No obvious compressive strength or setting time change of UHPC by adding CNFs

Technoeconomic analysis

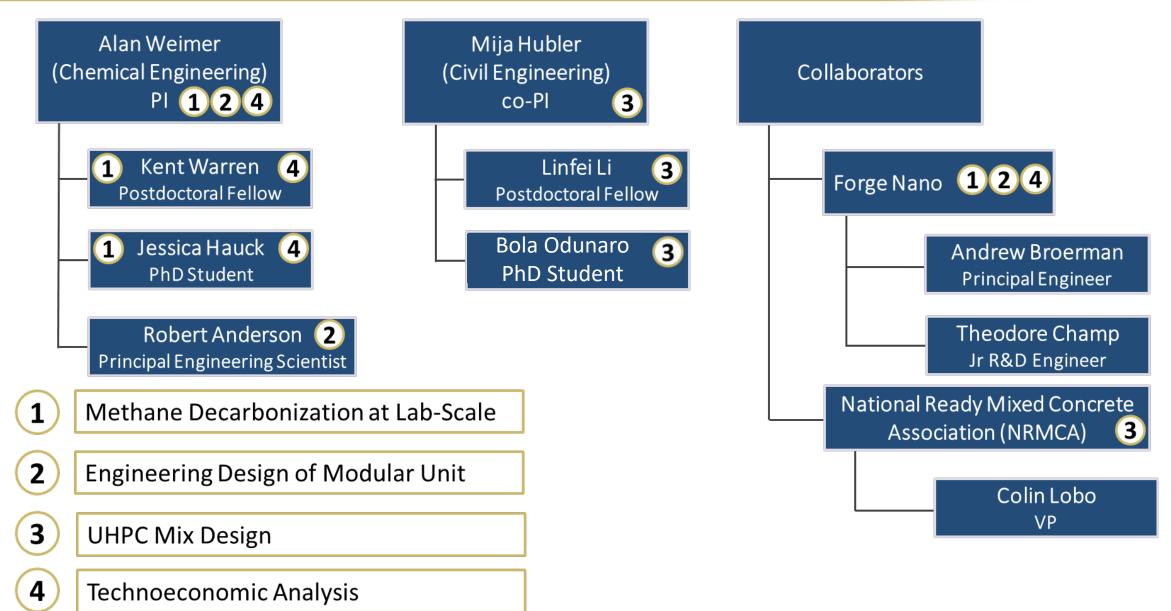
- TEA and H2A analysis complete
- Aspen plus simulation and PFD for modular flare gas scale process developed
- CNP product selling price estimated at < \$4/kg for 25% IRR

Acknowledgements

- Weimer Research Group Department of Chemical & Biological Engineering
- Hubler Research Group Department of Civil, Environmental, and Architectural Engineering
- Forge Nano
- National Ready Mixed Concrete Association

University of Colorado Boulder

Thank you for listening!



Any questions?

University of Colorado Boulder

Team Organization

Gantt Chart Status: in BP3

Completed Tasks		BUDGET PERIOD 1 Technical Development					BUDGET PERIOD 2 CNF Co-production & Integration				BUDGET PERIOD 3 Technology to Market				
1.1 Project Mgt. Plan		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14
1.2 Project Maturation Plan		• •		43	4	43	e		40	(•			Q14
1.3 TEA	TASK 1 PM & P														
	TASK 2 Particle ALD and CVD synthesis	2.1 Lab	System D	esign , Cor	nstruction,	"& Startu	qu	2	.2 CVD Rai	nge Findi	ng				
	TASK 3 Module/skid design & construction				3.1 Design	n of Skid S	System	3	.2 Skid Cor	nstructoi	ı			!	
3.1 Skid Design 4.1 & 4.2 Concrete Mix Design	BUDGET PERIOD 1 MILESTONES	1.1 1.2	1.3				2.1 3.1								
	TASK 4 Concrete Mix Design -purchased CNF	4.1	1 Establish	Concrete	Mix Desig	n Relatio	nship	4	4.2 UHPC (Concrete			ſ	1	
<u>Current Tasks</u> 3.2 Module Construction &	BUDGET PERIOD 2 MILESTONES									2.2	3.2 4.2				
Operation	TASK 5 Skid Operation & T2M											5.2 Re		u k CNF rietics & Gr	rowth
5.1 Concrete Mix Design with														5. T	2M
Lab Product	TASK 6 Concrete Mix Design – skid CNF											6	5.1 Concre	ete Skid CN 6.2 Optim	
	BUDGET PERIOD 3 MILESTONES												6.1	5.3	
	END OF PROJECT														6.2
2.1 GO/NO-GO 1 3.2 GO/NO-GO 2 Modification of Fluidized Bed Reactor Operate Module at Prescribed Scale															