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Project Overview

A Modular System for Direct Conversion of Methane into

Title . .
Methanol via Photocatalysis
Award No. DE-FE0031867
Period of Performance 10/01/2020 - 09/30/2024
Project Funding DOE: $1,000,000 Cost-Share: $250,000

Develop a liquid phase photocatalytic process for direct conversion of

Overall Project Goal methane in flare gas into methanol.

FIESEE BB N Stanford University, Susteon Inc., Casale SA

DOE/NETL Project Manager Frances Toro




Organization Chart

Integrating Catalyst Development, Separation, Scale-up and Reactor Design

Arun Majumdar

Principal Investigator
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Technical Background - Grand Challenge

U. S. Methane

@ee Reduction Action Plan

From U. S. Department of Energy

& U. S. Environmental Protection Agency




Technical Background - CH, Pollution

1800

1600

—
=
o
=

CH,4 mixing ratio (ppb)
)
S

1000
800

600

T T T T T T T 15
| 1950 GLOBAL MONTHLY MEAN CH. g 120
1900
| _ 100
T 1850
g
- § 1800 i 80
% 1750 60
- E —
EF: 1700
40
| 1650 .
7
16'{%80 1985 1990 1995 2000 2005 2010 2015 2020 2025 20
L Year .
00 HopaBd °
000 L0000 o Co o0 R ¢ %
| @ % o ¢ * © Antarctic (Law Dome) iceffim _|
@ Cape Grim (flasks/in situ)
| | 1 | | 1 | 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Year

CH, GlobalWarming Potentials

84x more potent
than CO, per kg

100

28X more potent
years

than CO, per kg

10 20 30 40 50 60 70 80 90 100
Year after emissions

» Atmospheric concentration - rapidly rising

» Contributed to ~ 30% of warming temperatures

Atm. Environ. 2010, 44 (27), 3343
Phil. Trans. Roy. Soc. A 2022, 380 (2215), 20210108



Technical Background - CH, Flaring Issue
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One Solution - Upgrade Methane to Methanol
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One Solution from Nature
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Technology Approach - Free Radicals from Photocatalysis
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Two Interconnected Goals using Free Radicals

» 1) Methane Upgrading to Methanol

(Concentrated Emission Source)

»2) Environment Methane Removal

(Dilute Emission Source)
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Technology Approach - Experimental Set-up and Materials
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Nano Letters, 2023, 23 (5), 2039-2045 12



Current Status - Methane Conversion

Methane Conversion Ratio (~1 %) + Liquid Product Selectivity (~90%)

Au-9nmSi02-Ti02 + 470 mW.cm™
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Reaction conditions: 10 mg catalysts, 100 mL H,0, 6.89 bar CH,, 2.76 bar O,,

13
1 h reaction time, reaction temperature: 25 + 3 °C, light source: 365 nm UV LED



Current Status - Breaking the Trade-off

Comparison with other reported catalysts
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What we learned
O The quantum efficiency is low (~1%)

O Most of the photon flux turned into heat

1TJACS, 2019, 141, 20507-20515 2 ACS Catal. 2020, 10, 14318-14326 3 Nat. Sustain. 2021, 4, 509-515;
4 Nat. Commun. 2021, 12, 1218 >Science, 2017, 358, 223-227
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Current Status — Techno-Economic Analysis
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Another Solution to Convert Methane

Mimic how nature does
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Promising solution to reduce methane’s 20-year

global warming impact by 99%
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The Gap of Dilute Methane Removal

Methane Emission (Tg/year)
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Our Experimental Platform for Methane Removal
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Max Kessler Richard Randall
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Progress - Removing 20 ppm
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Photocatalysis enables high conversion of CH, to CO,

19



Progress — Temperature Effect
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Progress — UV Flux-driven Methane Removal

1e—7 Rate vs Methane Conc. at Varying Light Fluxes
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» UV flux significantly impacts the rate of methane removal

» Quantified the reaction rate spanning various concentrations
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Progress — Atmospheric Concentration
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Project Schedule

Task/Subtask

Task 1

Task 2

Task 3

Task 4

GO/NO-GO Decision

Task 5

Task 6

Task 7

Task 8

Task 9
Task 10

Key Milestone

Kickoff meeting and submission of revised project management plan (PMP),
technology maturation plan and techno-economic analysis

Successful demonstration of the ability to incorporate the co-catalyst clusters

and molecular complexes with the semiconductor catalyst while controlling
co-catalyst loading and proximity to semiconductor sites.

Successful optimization of semiconductor material and synthesis conditions
for maximizing hydroxyl radical production.

Successful optimization of a bifunction photocatalyst with a capable of
converting methane into methanol with high selectivity and yield.

Test results show approaching 7-10% methane conversion with 80-90%
methanol selectivity under commercially reasonable operating conditions.

Complete one final iteration for optimizing bifunctional catalyst for methane
to methanol conversion and potential for future catalyst scaleup and large-
scale production.

Obtain key operating catalyst performance data under realistic conditions
with simulated natural gas for commercial application.

Identification of effective reactor configuration to optimize methane transfer
onto the catalyst surface across the aqueous media.

Demonstrate production of photocatalytic methane to methanol conversion
using H,O as reagent for hydroxyl radical production

Demonstration of activation of methane or CO, in a mixture with other gases
Pilot plant design for modular operation

Planned

Completion

Date
04/01/2020

v

01/31/2021

01/31/2021 v
09/30/2021 v

09/30/2021

v

03/31/2022\/

06/30/2022

v

09/30/2022

v

09/30/2022

v

09/30/2024
07/30/2023 f



Future Development Plan

»Water (moisture) on methane removal

» Co-feeding gases (e.g., hydrogen, ammonia,
carbon monoxide)

» Stability of the photocatalysts

» Other gas-phase reactions
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Summary

» Generation of Free Radicals for Methane Activation via Photocatalysis

» Point Emission Source (Concentrated Methane) CH, to CH,OH

Benchmarking the Performance for Methane Upgrading to Methanol

» Dilute / Environmental Methane Removal CH,to CO,

Leveraging Free Radicals for the Removal of 2 ppm Methane
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Appendix
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Gantt Chart

Project Timeline
Assigned
Resources 1 23456 7 8 910111213141516171819202122 2324 25 26 27 28 29 30 31 32 33 34 35 36
ask 1. Project Management and Planning
Subtask 1.1 Project Management Plan
Subtask 1.2 Technology Maturation Plan
Subtask 1.3 Techno-Economic Analysis

ask 2: Catalyst Synthesis

Subtask 2.1: Semiconductor catalyst synthesis

Subtask 2.2: Co-catalyst synthesis

Subtask 2.3: Integration of semiconductor and co-catalystinto bifunctional catalysts

Milestone 2: Successful demonstration of the ability to incorporate the co-catalyst clusters and

molecular complexes with the semiconductor catalyst while controlling co-catalyst loading and <
proximity to semiconductor sites.

ask 3. Multiplex Fluorescence Array High-Throughput Screening
Milestone 3: Successful optimization of semiconductor material and synthesis conditions for

maximizing hydroxyl radical production.

Task 4: Bifunctional Catalyst Testing. | |
Milestone 4: Successful optimization of a bifunction photocatalyst with a capable of converting

methane into methanol with high selectivity and yield.

Go/No-Go Decision Milestone: Test results show approaching 7-10% methane conversion with 80-

90% methanol selectivity under commercially reasonable operating conditions. 09/30/2021
Milestone 5: Complete one final iteration for optimizing bifunctional catalyst for methane to methanol

conversion and potential for future catalyst scaleup and large-scale production.

ask 6: Experimental Identification of Optimal Operating Window

Milestone 6: Obtain key operating catalyst performance data under realistic conditions with simulated
natural gas for commercial application.

Stanford &
ask 7: Evaluation of Reactor Design Susteon

Milestone 7: Identification of effective reactor configuration to optimize methane transfer onto the KX
catalyst surface across the aqueous media.

ask 8: Evaluation of Water as Hydroxyl Radical Source

Milestone 8: Demonstrate production of photocatalytic methane to methanol conversion using H20 as -
reagent for hydroxyl radical production.

ask 9: Activation of CH4 or CO2 in a mixture of other gases

Milestone 9: Demonstration of activation of methane or carbon dioxide in a mixture with other gases

Milestone 10: Design pilot plant for the modular operation &

With an extension to 09/30/2024
27
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