### Modular System for Direct Conversion of

## **Methane into Methanol via Photocatalysis**

PI: Arun Majumdar

Presenter : Gang Wan

**Stanford University** 

DOE/NETL Program Manager : Frances Toro



Project Overview and Technology Background

Technical Approach and Current Status

Future Development Plan

➢Summary

# **Project Overview**

| Title                    | A Modular System for Direct Conversion of Methane into<br>Methanol via Photocatalysis                      |                    |  |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|
| Award No.                | DE-FE0031867                                                                                               |                    |  |  |  |  |  |  |
| Period of Performance    | 10/01/2020 – 09/30/2024                                                                                    |                    |  |  |  |  |  |  |
| Project Funding          | DOE: \$1,000,000 Cos                                                                                       | t-Share: \$250,000 |  |  |  |  |  |  |
| Overall Project Goal     | Develop a liquid phase photocatalytic process for direct conversion of methane in flare gas into methanol. |                    |  |  |  |  |  |  |
| Project Participants     | Stanford University, Susteon Inc., Casale SA                                                               |                    |  |  |  |  |  |  |
| DOE/NETL Project Manager | Frances Toro                                                                                               |                    |  |  |  |  |  |  |

# **Organization Chart**

#### Integrating Catalyst Development, Separation, Scale-up and Reactor Design



#### Arun Majumdar

**Principal Investigator** 



(Research

Scientist)



Max Kessler **Richard Randall** (graduate (graduate student) student)



**Raghubir Gupta** 

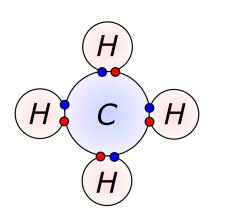


Vasudev Haribal








Ermanno Filippi Michal Bialkowski Pierdomenico Biasi

Stanford Experiments; Modeling

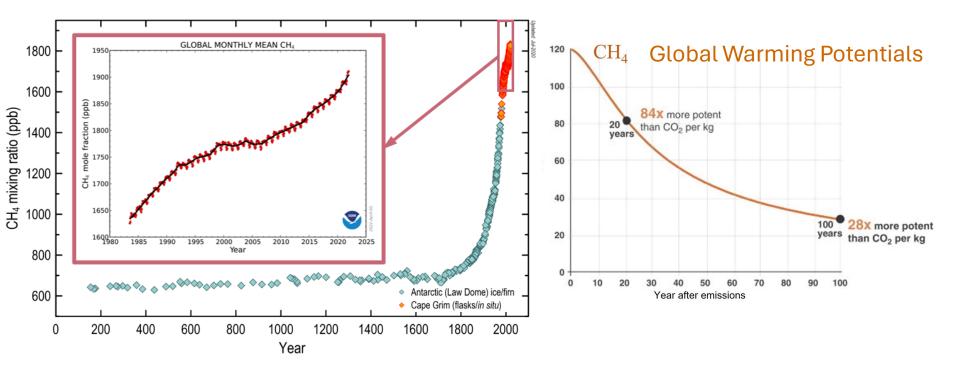
Susteon and Casale Tech-Economic Analysis

4

# **Technical Background – Grand Challenge**



#### U.S. Methane


**Reduction Action Plan** 

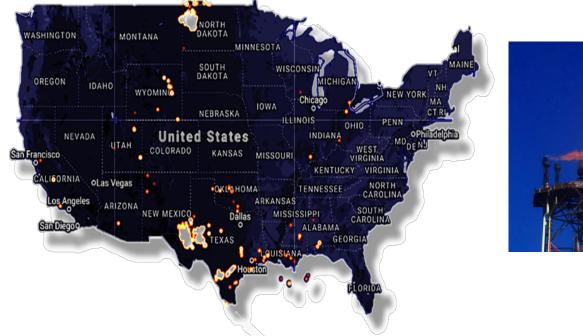


#### From U.S. Department of Energy

& U. S. Environmental Protection Agency

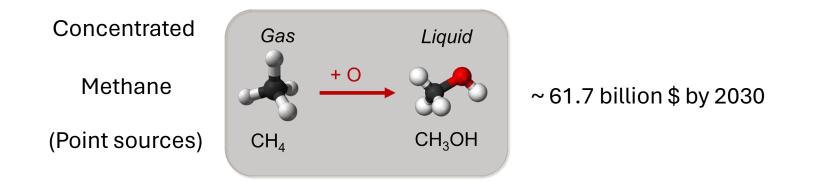
# **Technical Background - CH<sub>4</sub> Pollution**

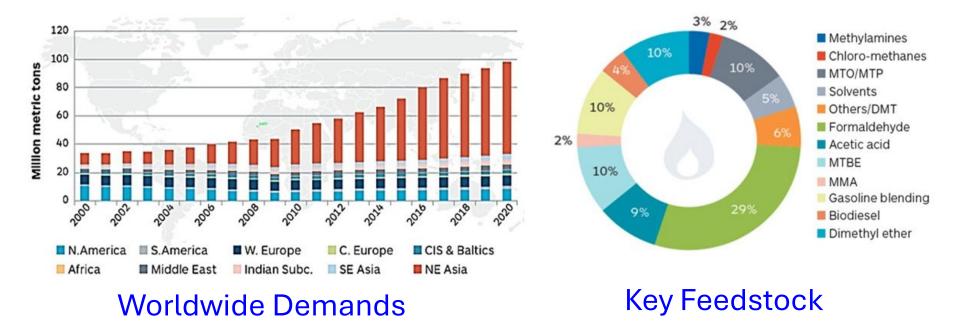



#### Atmospheric concentration - rapidly rising

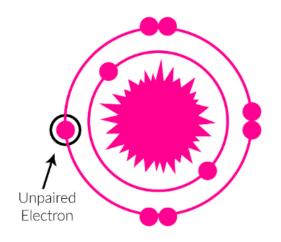
Contributed to ~ 30% of warming temperatures

Atm. Environ. 2010, 44 (27), 3343

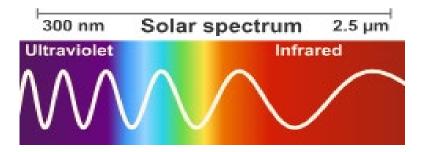

Phil. Trans. Roy. Soc. A 2022, 380 (2215), 20210108


# **Technical Background - CH<sub>4</sub> Flaring Issue**

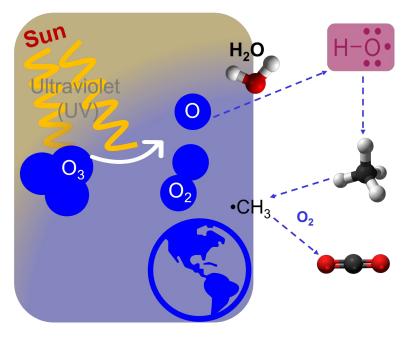



#### Contribute 1% of global CO<sub>2</sub> emissions

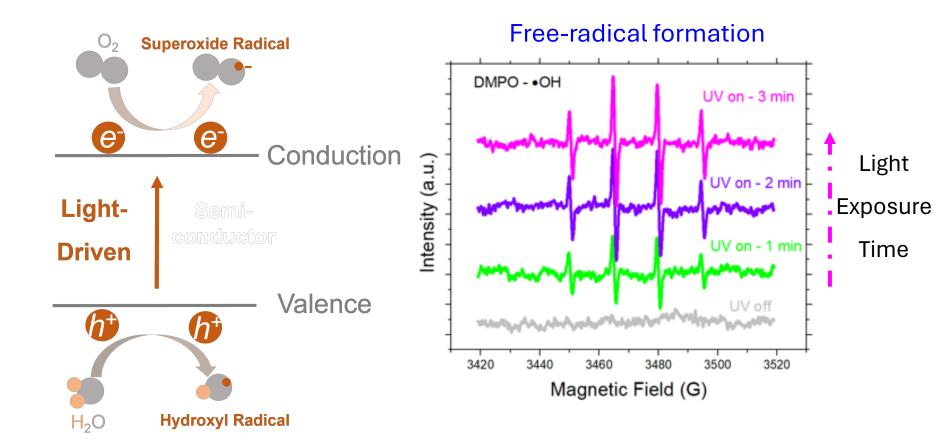
### **One Solution - Upgrade Methane to Methanol**







# **One Solution from Nature**

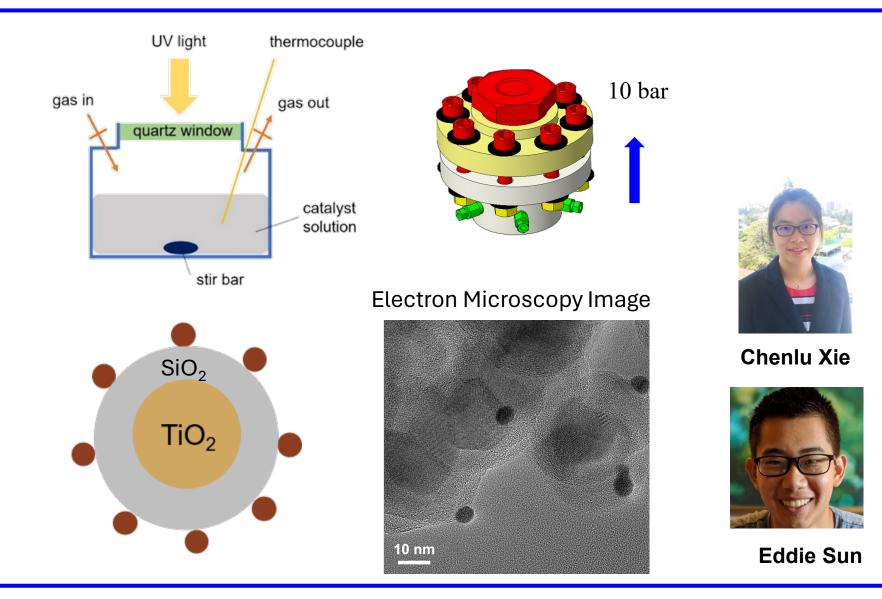



**FREE RADICAL** 



#### **Free-Radicals Pathway**

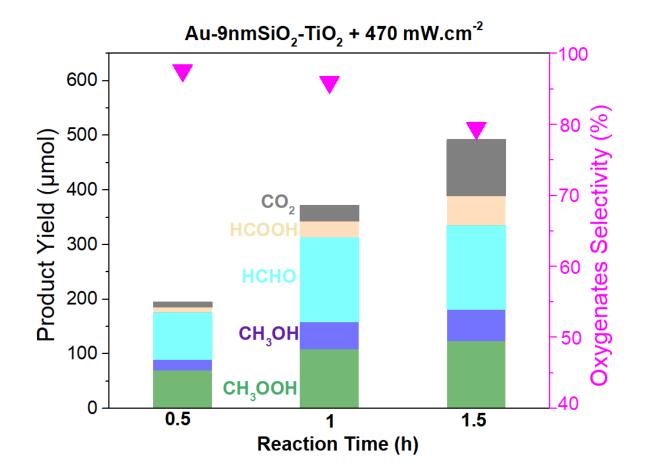



#### **Technology Approach - Free Radicals from Photocatalysis**



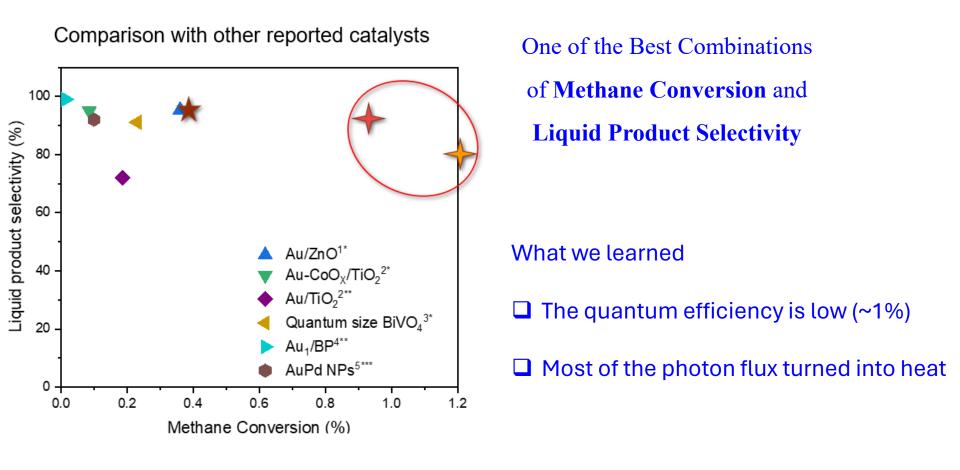
 Methane Upgrading to Methanol (Concentrated Emission Source)

2) Environment Methane Removal (Dilute Emission Source)


#### **Technology Approach - Experimental Set-up and Materials**



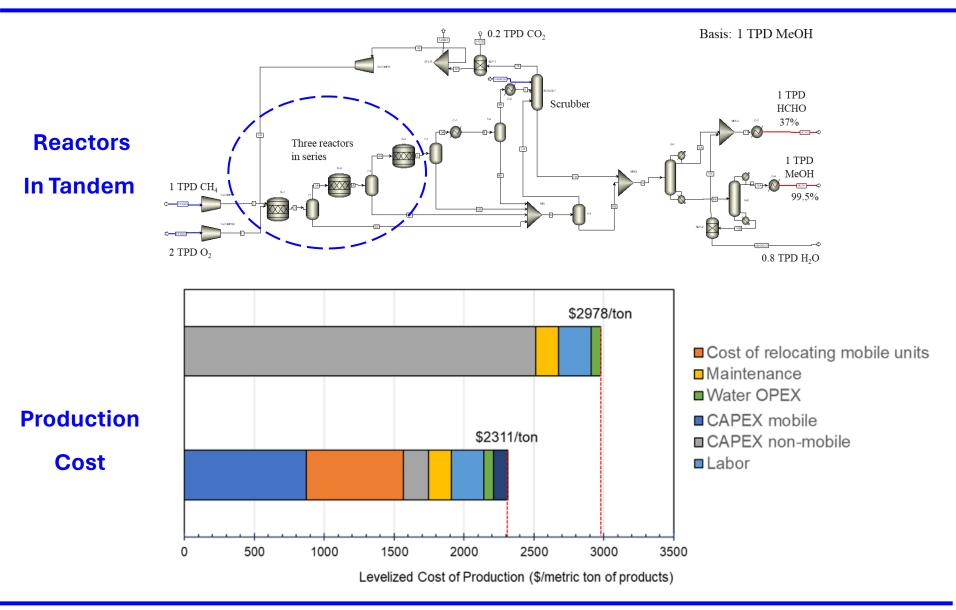
Nano Letters, **2023**, 23 (5), 2039–2045


### **Current Status – Methane Conversion**

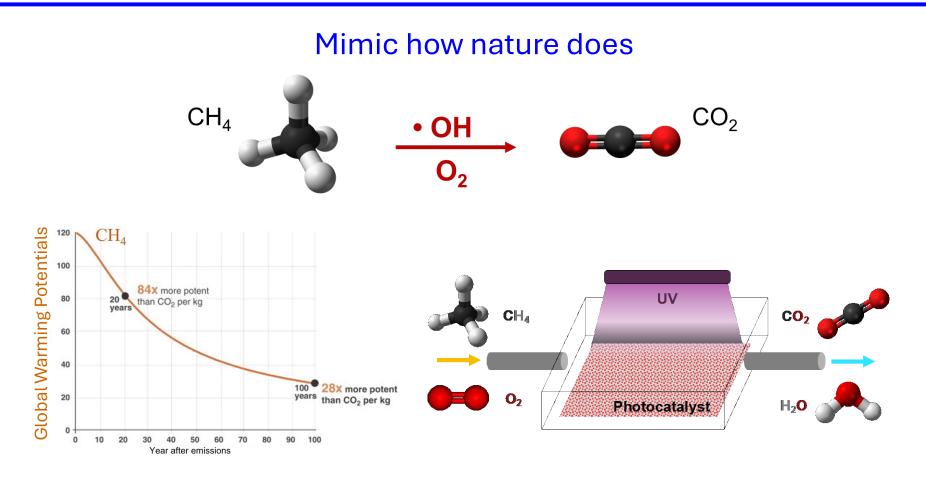
#### Methane Conversion Ratio (~1 %) + Liquid Product Selectivity (~90%)



**Reaction conditions:** 10 mg catalysts, 100 mL H<sub>2</sub>O, 6.89 bar CH<sub>4</sub>, 2.76 bar O<sub>2</sub>, 1 h reaction time, reaction temperature:  $25 \pm 3$  °C, light source: 365 nm UV LED


### **Current Status – Breaking the Trade-off**

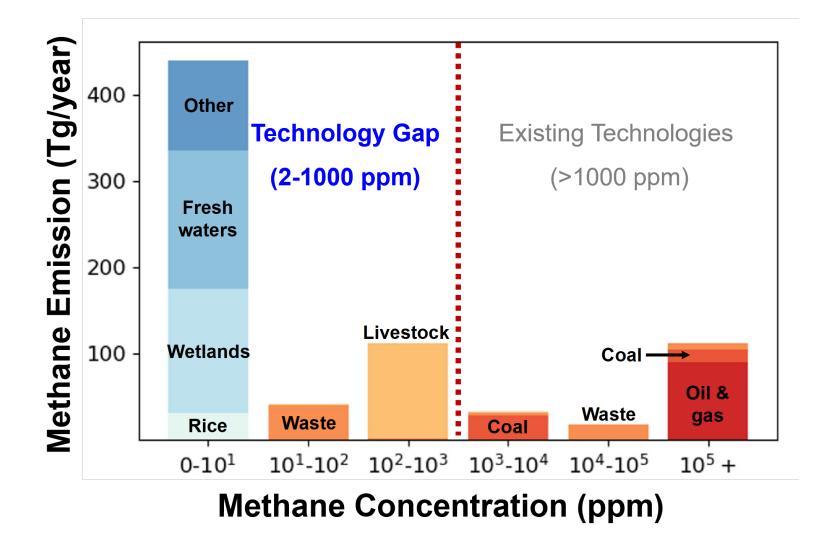



<sup>1</sup> JACS, **2019**, 141, 20507–20515 <sup>2</sup> ACS Catal. **2020**, 10, 14318–14326 <sup>3</sup> Nat. Sustain. **2021**, 4, 509–515;

<sup>4</sup> Nat. Commun. 2021, 12, 1218 <sup>5</sup>Science, 2017, 358, 223–227

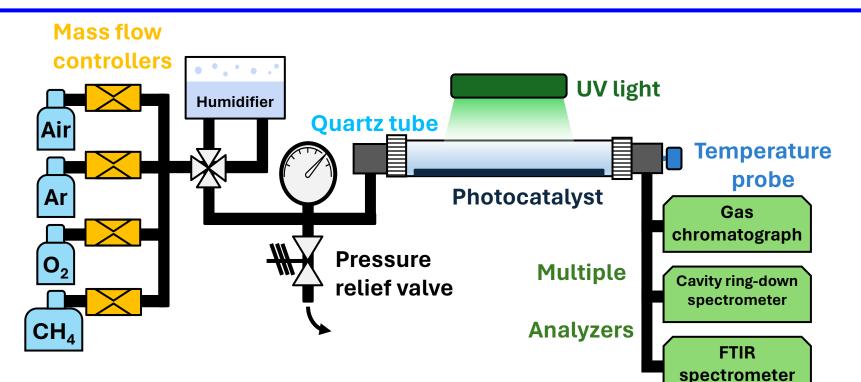
### **Current Status – Techno-Economic Analysis**




# **Another Solution to Convert Methane**



Promising solution to reduce methane's 20-year


global warming impact by 99%

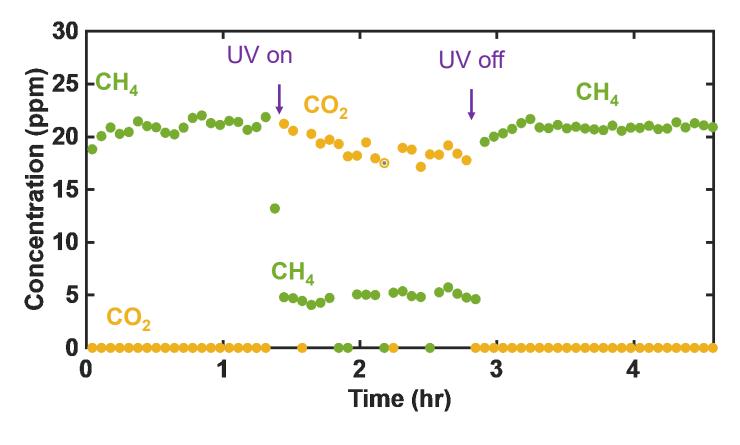
# The Gap of Dilute Methane Removal



Environmental Research Letters 2023, 18 (9), 094064

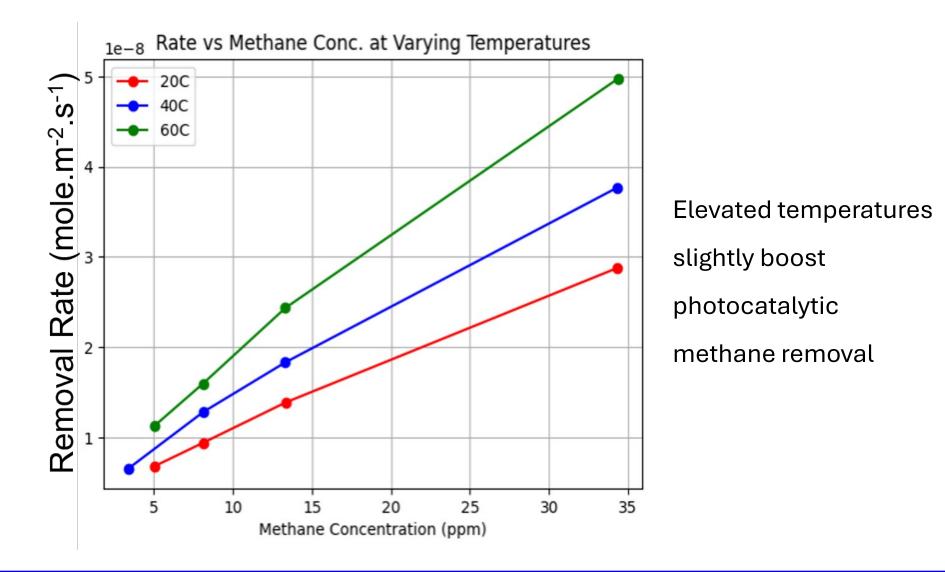
## **Our Experimental Platform for Methane Removal**




# Precisely control gas input, and quantify the products

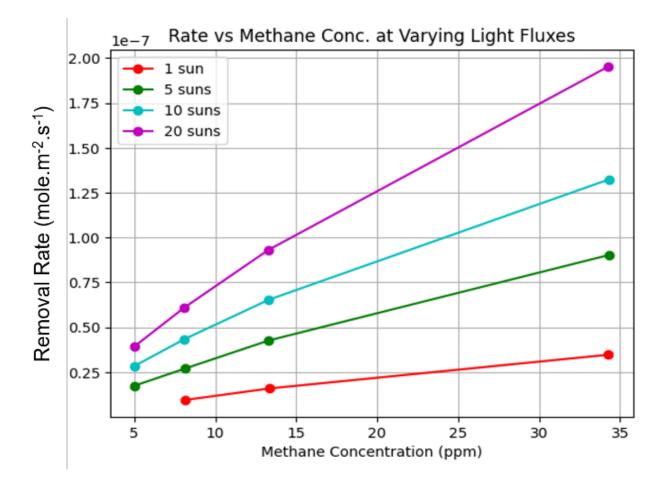


**Max Kessler** 


**Richard Randall** 

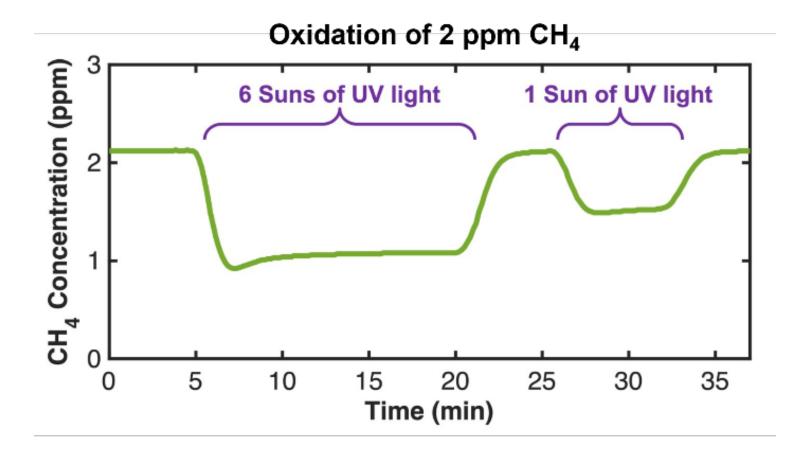
# **Progress – Removing 20 ppm**




Photocatalysis enables high conversion of CH<sub>4</sub> to CO<sub>2</sub>

# **Progress – Temperature Effect**




#### At kinetically controlled regions

### **Progress – UV Flux-driven Methane Removal**



- > UV flux significantly impacts the rate of methane removal
- Quantified the reaction rate spanning various concentrations

### **Progress – Atmospheric Concentration**



Existing studies are largely limited to concentrations > 100 ppm

# **Project Schedule**

| Task/Subtask      | Key Milestone                                                                                                                                                                                                                    | Planned<br>Completion<br>Date |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Task 1            | Kickoff meeting and submission of revised <b>project management plan</b> (PMP), technology maturation plan and techno-economic analysis                                                                                          | 04/01/2020                    |
| Task 2            | Successful demonstration of the ability to <b>incorporate the co-catalyst</b> clusters<br>and molecular complexes with the semiconductor catalyst while controlling<br>co-catalyst loading and proximity to semiconductor sites. | 01/31/2021 🗸                  |
| Task 3            | Successful optimization of semiconductor material and synthesis conditions for maximizing hydroxyl radical production.                                                                                                           | 01/31/2021 🧹                  |
| Task 4            | Successful optimization of a <b>bifunction photocatalyst</b> with a capable of converting methane into methanol with high selectivity and yield.                                                                                 | 09/30/2021 🗸                  |
| GO/NO-GO Decision | <b>Test results</b> show approaching 7-10% methane conversion with 80-90% methanol selectivity under commercially reasonable operating conditions.                                                                               | 09/30/2021 🗸                  |
| Task 5            | Complete one final iteration for <b>optimizing bifunctional catalyst</b> for methane to methanol conversion and potential for future catalyst scaleup and large-scale production.                                                | 03/31/2022                    |
| Task 6            | Obtain <b>key operating catalyst performance data</b> under realistic conditions with simulated natural gas for commercial application.                                                                                          | 06/30/2022 🗸                  |
| Task 7            | Identification of effective <b>reactor configuration</b> to optimize methane transfer onto the catalyst surface across the aqueous media.                                                                                        | 09/30/2022                    |
| Task 8            | Demonstrate production of photocatalytic methane to methanol conversion using $H_2O$ as reagent for hydroxyl radical production                                                                                                  | 09/30/2022 🗸                  |
| Task 9            | Demonstration of activation of methane or $CO_2$ in a mixture with other gases                                                                                                                                                   | 09/30/2024                    |
| Task 10           | Pilot plant design for modular operation                                                                                                                                                                                         | 07/30/2023 🗸                  |

>Water (moisture) on methane removal

Co-feeding gases (e.g., hydrogen, ammonia, carbon monoxide)

Stability of the photocatalysts

>Other gas-phase reactions

# **Summary**

Generation of Free Radicals for Methane Activation via Photocatalysis

- Point Emission Source (Concentrated Methane) CH<sub>4</sub> to CH<sub>3</sub>OH Benchmarking the Performance for Methane Upgrading to Methanol
- $\blacktriangleright$  Dilute / Environmental Methane Removal  $CH_4$  to  $CO_2$ 
  - Leveraging Free Radicals for the Removal of 2 ppm Methane

# **Appendix**

# **Gantt Chart**

| Project Timeline                                                                                                                                                                                                                                                                                                                        |                       | Budget Period 1<br>10/1/2020-09/30/2021 |     |     |     |    | Budget Period 2<br>10/1/2021-09/30/2023 |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|-----|-----|-----|----|-----------------------------------------|-------|-------|---------|--------|--------|-------|-------|--------|------|------|-------|------|-------|------|------|-------|
|                                                                                                                                                                                                                                                                                                                                         | Assigned<br>Resources | 1                                       | 2 3 | 4 5 | 5 6 | 78 | 91                                      | .0 11 | 12 13 | 8 14 15 | 5 16 1 | 7 18 : | 19 20 | 21 23 | 2 23 2 | 4 25 | 26 2 | 27 28 | 29 3 | 30 31 | 32 3 | 3 34 | 35 36 |
| Task 1. Project Management and Planning                                                                                                                                                                                                                                                                                                 | Stanford              |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Subtask 1.1 Project Management Plan                                                                                                                                                                                                                                                                                                     |                       |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Subtask 1.2 Technology Maturation Plan                                                                                                                                                                                                                                                                                                  |                       |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Subtask 1.3 Techno-Economic Analysis                                                                                                                                                                                                                                                                                                    |                       |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Task 2: Catalyst Synthesis                                                                                                                                                                                                                                                                                                              | Stanford              |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Subtask 2.1: Semiconductor catalyst synthesis                                                                                                                                                                                                                                                                                           |                       |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Subtask 2.2: Co-catalyst synthesis                                                                                                                                                                                                                                                                                                      |                       |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Subtask 2.3: Integration of semiconductor and co-catalyst into bifunctional catalysts<br><u>Milestone 2</u> : Successful demonstration of the ability to incorporate the co-catalyst clusters and<br>molecular complexes with the semiconductor catalyst while controlling co-catalyst loading and<br>proximity to semiconductor sites. |                       |                                         |     |     |     |    | *                                       |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Task 3. Multiplex Fluorescence Array High-Throughput Screening                                                                                                                                                                                                                                                                          | Stanford              |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| <u>Milestone 3</u> : Successful optimization of semiconductor material and synthesis conditions for<br>maximizing hydroxyl radical production.                                                                                                                                                                                          |                       |                                         |     |     |     |    | *                                       |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Task 4: Bifunctional Catalyst Testing                                                                                                                                                                                                                                                                                                   |                       |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Milestone 4: Successful optimization of a bifunction photocatalyst with a capable of converting<br>methane into methanol with high selectivity and yield.                                                                                                                                                                               |                       |                                         |     |     |     |    |                                         |       | *     |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Go/No-Go Decision Milestone: Test results show approaching 7-10% methane conversion with 80-<br>90% methanol selectivity under commercially reasonable operating conditions.                                                                                                                                                            | 09/30/2021            |                                         |     |     |     |    |                                         |       | *     |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Task 5: Study of Structure-Property Relationships<br><u>Milestone 5</u> : Complete one final iteration for optimizing bifunctional catalyst for methane to methanol<br>conversion and potential for future catalyst scaleup and large-scale production.                                                                                 | Stanford              |                                         |     |     |     |    |                                         |       |       |         |        | *      |       |       |        |      |      |       |      |       |      |      |       |
| Task 6: Experimental Identification of Optimal Operating Window                                                                                                                                                                                                                                                                         | Stanford              |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| <u>Milestone 6</u> : Obtain key operating catalyst performance data under realistic conditions with simulated<br>natural gas for commercial application.                                                                                                                                                                                |                       |                                         |     |     |     |    |                                         |       |       |         |        |        |       | *     |        |      |      |       |      |       |      |      |       |
| Task 7: Evaluation of Reactor Design                                                                                                                                                                                                                                                                                                    | Stanford &<br>Susteon |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| <u>Milestone 7</u> : Identification of effective reactor configuration to optimize methane transfer onto the<br>catalyst surface across the aqueous media.                                                                                                                                                                              |                       |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        | *    |      |       |      |       |      |      |       |
| Task 8: Evaluation of Water as Hydroxyl Radical Source                                                                                                                                                                                                                                                                                  | Stanford              |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Milestone 8: Demonstrate production of photocatalytic methane to methanol conversion using H2O as<br>reagent for hydroxyl radical production.                                                                                                                                                                                           |                       |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        | *    |      |       |      |       |      |      |       |
| Task 9: Activation of CH4 or CO2 in a mixture of other gases                                                                                                                                                                                                                                                                            | Stanford              |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Milestone 9: Demonstration of activation of methane or carbon dioxide in a mixture with other gases                                                                                                                                                                                                                                     |                       |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      | *    |       |
| Task 10: Pilot plant design for modular operation                                                                                                                                                                                                                                                                                       | Susteon               |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      |       |
| Milestone 10: Design pilot plant for the modular operation                                                                                                                                                                                                                                                                              |                       |                                         |     |     |     |    |                                         |       |       |         |        |        |       |       |        |      |      |       |      |       |      |      | *     |