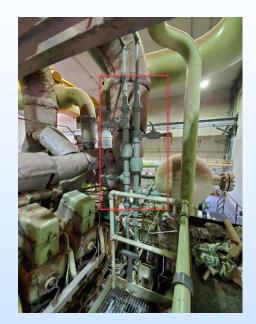
Methane Mitigation Using Linear Motor Leak Recovery Compressor DOE Project No. DE-FE0031875

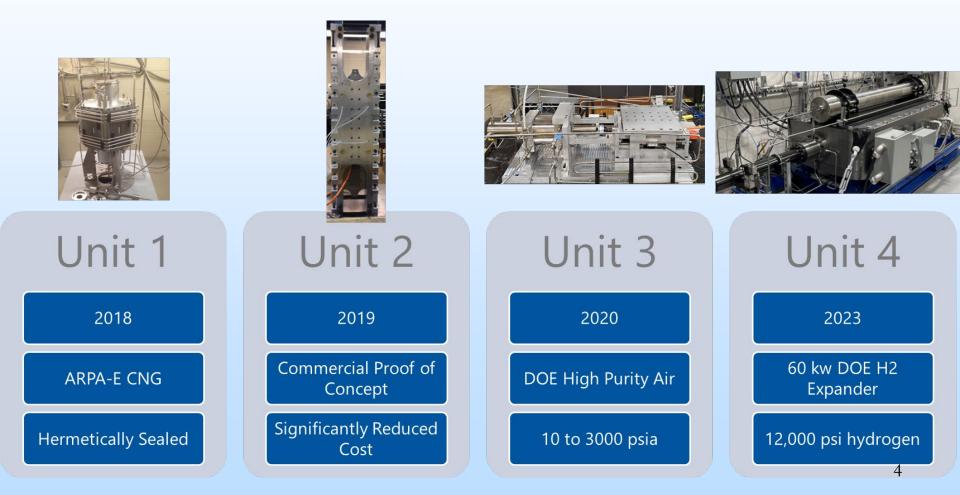
Jason Stair GTI Energy


U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 2-4, 2024

Project Overview

- Funding (DOE and Cost Share)
 - DOE: \$1,499,918
 - CS: \$375,002 (Operations Technology Development)
- Overall Project Performance Dates
 - 2/4/2021 9/30/2024
- Project Participants
 - GTI Energy
 - University of Texas Center for Electromechanics
- Overall Project Objectives
 - Design, build, and test a methane leak recovery compressor for midstream compressor stations

Technology Background


- Compressor stations have concentrated methane leaks
 - Compressor packing
 - Engine starters
 - Valves
 - Blowdowns, etc.
- Existing solutions are often costly and only partially address leaks
- GTI is developing a unique, linear motor driven compressor
 - Recover gas from any/all sources
 - Compress leaks directly back to pipeline
 - Minimize impact on existing equipment

Technology Background

Key programs have advanced technology towards commercialization

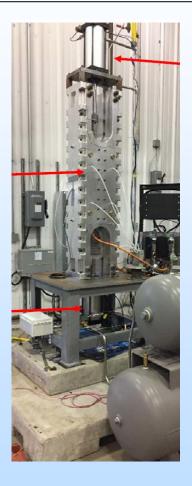
Competing Technology

- Other recovery compressors limited discharge pressure, inefficient flow control, high maintenance, and/or expensive
- Fuel gas recovery requires operating compressor, adds reliability risk
- Static seals single emission fix for when compressor is taken offline, do not stop emissions when running
- Low/no-bleed pneumatics partial solution, massive retrofit requirement, reliability risk
- **Packing maintenance** labor-intensive and typically done without regard to actual emissions rate

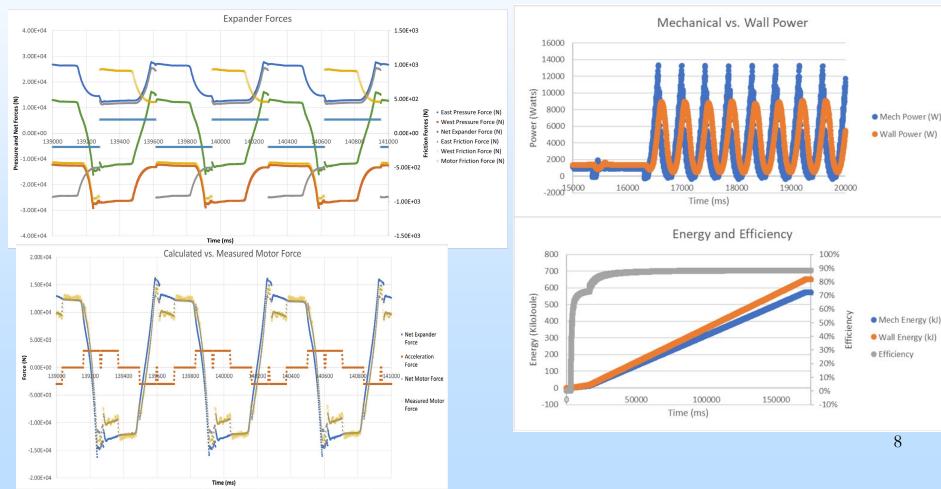
Tescorp Vent Master www.tescorp.com

Cook Static-Pac® www.cookcompression.com

Haug Sirius www.sauerusa.com5


Linear Compressor Advantage

- Semi-hermetically sealed No additional gas leaks during operation
- **High discharge pressure** Return gas to midstream pipelines
- Accurate flow control Maintain existing vent system at 0 to 0.25 psig
- No impact on existing equipment Existing equipment left unmodified to maintain reliability
- **Single moving part** Lower cost and maintenance
- **Oil free design** Reduced maintenance and gas contamination
- Wet gas Compress wet or heavy gas


Project Scope

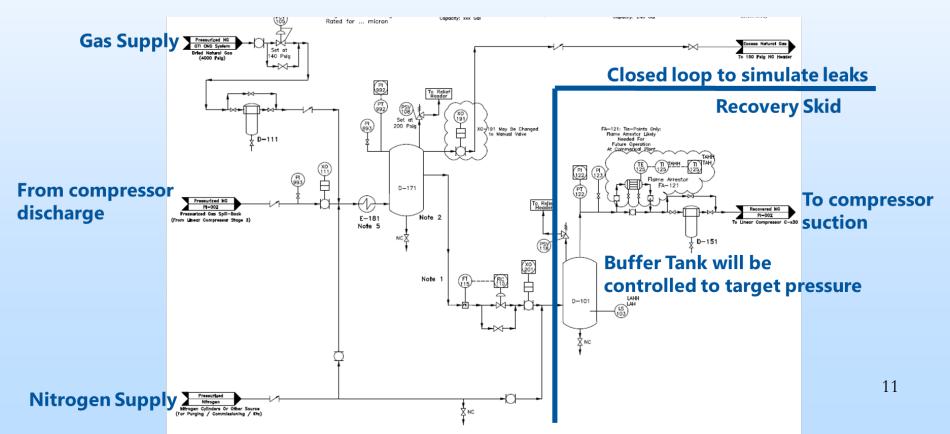
- Design a linear motor leak recovery compressor
 - Inlet: Near atmospheric (0 to 0.25 psig)
 - Discharge: 1500 psig
 - Target flow: 60 SCFM
- Integrate compressor into leak recovery skid
- Install compressor and recovery skid in GTI's environmentally controlled test chamber
- Extensively test complete linear motor leak recovery skid to verify performance and durability
- Success: Show durability and accurate flow control for a reasonable price

Project Status

• Motor control and performance has been thoroughly tested and validated

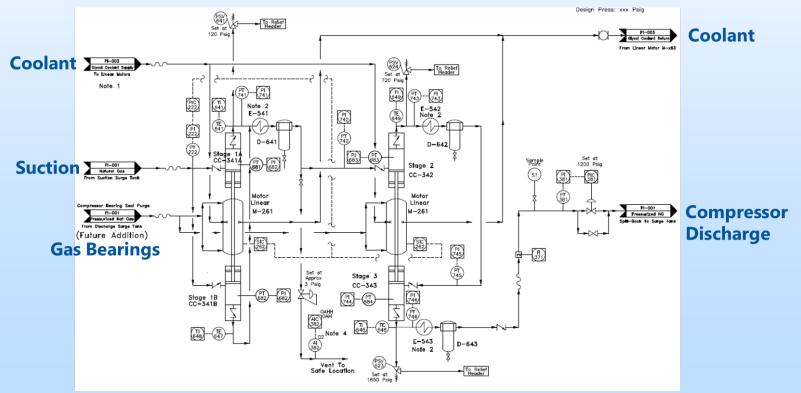
Project Status

- Motor assembly has undergone design iterations to improve durability, cost, modularity, and ease of assembly/maintenance
 - Single motor design \rightarrow One motor per stage
 - Modular frame design to easily scale compressor power
 - Modular design to reduce manufacturing costs and interchangeability
 - Modified hermetically sealed design to reduce cost and improve pressure rating
 - Identified and tested alternative drives and power supplies to reduce cost and improve efficiency



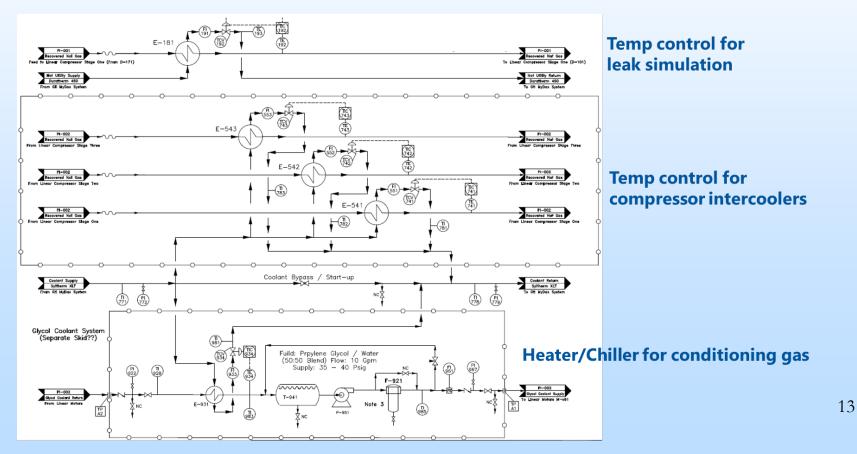
Project Status

- Compressor has undergone multiple design iterations to improve performance, durability, and ease of assembly/maintenance
 - Single acting design \rightarrow Double acting design
 - Improved flow control and reduced inlet pulsations
 - Lip seals \rightarrow Low leak split ring seals
 - Improved durability and efficiency (less friction)
 - Optimized compressor valves
 - Lower pressure drop and suitable for variable flow
 - Modified compressor layout
 - Easier assembly/maintenance, improved flow


Technology Status

- Compressor tested in closed loop
- Leaks will be simulated by independent control system and will flow into recovery skid buffer tank

Technology Status


- Filtered gas will flow into 3-stage compressor and compressed to discharge pressure
- Pressures, temperatures, flow and power will be measured to quantify performance

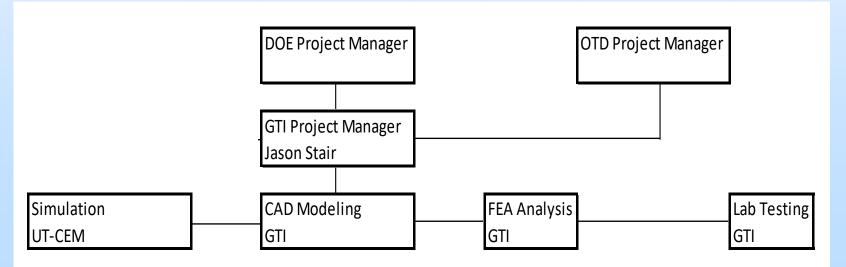
12

Technology Status

• Simulated leaks, interstage gas, and test chamber will be controlled using heater/chiller to simulate variety of operating conditions

Future testing/development/ commercialization

- Preliminary testing and validation will be completed at GTI
- Working with upstream operators to test lower pressure designs in the field
- Working with gas utilities to deploy in midstream
- Working with equipment manufacturers to develop design for 7,200 psi
- Applications beyond methane leak recovery have also been identified and are being pursued


Summary Slide

- Methane capture is necessary to maximize the efficiency of our natural gas resources and infrastructure
- The successful development of a high efficiency, modular compressor capable of operating up to several thousand psi will enable leak mitigation and gas capture across the natural gas value chain

Appendix

Organization Chart

- GTI Project lead, design lead, compressor testing
- UT-CEM Simulation, Motor testing
- OTD Industry insight and feedback
- Burckhardt Compressor design insight

Gantt Chart

		ſ		2020		2021				2022				2023				2024			
		İ								Quarter											
Task	Methane Mitigation	G/NG	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Project Management and Planning																				
1.1	Project management plan																				
1.2	Technology mauration plan																				
2	Preliminary Design													_							
2.1	Simulate performance and control of compressor																				
2.2	Preliminary compressor design	G/NG																			
2.3	Key component design, analysis, and testing																				
2.4	Design and build testing apparatus																				
2.5	Economic analysis																				
3	Component Testing and Detailed Design																				
3.1	Preliminary fabrication, testing, and validation																				
3.2	Detailed design and simulation	G/NG																			
4	Prototype Fabrication, Assembly, and Pilot-Scale Testing																				<u> </u>
4.1	Prototype fabrication and assembly																				<u> </u>
4.2	Continue from 2.4: Design and build testing apparatus																				ים
4.3	Continue from 3.1: Preliminary fabrication, testing, and validation																				
4.4	Pilot-scale testing																				
4.5	Final economic analysis																				