

Energy Efficient Amines as a Retrofit for Natural Gas Sweetening

Project Number: FWP 80526 [NETL/DOE PM: Bob Knoll]

Phillip Koech

2024 NETL Resource Sustainability Project Review Meeting

April 2-4, 2024

PNNL is operated by Battelle for the U.S. Department of Energy

Acknowledgment

"This material is based upon work supported by the U.S. Department of Energy under Field Work Proposal FWP-80526."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Project Overview

Total Project Funding: DOE \$500,000 and Champion X \$100,000 **Overall Project Performance Dates:** 01/01/2023-03/31/2025

Project Objectives

Develop a drop-in solvent with 50% lower regeneration energy compared to aMDEA and removes H_2S to pipe spec <4ppm

- Aqueous amine solutions such as aMDEA and MEA have been very effective for many years in natural gas sweetening.
- Aqueous amines require a tremendous amount of energy to regenerate in gas processing plants.
- Water-Lean solvents offer a tremendous opportunity to decrease reboiler duty.
- This work evaluates the feasibility of using water-lean solvents as drop-in replacement for aqueous amines.

Project Scope

Feasibility

Performance Benchmark

- \checkmark Short list of candidate anhydrous amines to benchmark against aMDEA with simulations of candidates under various sets of conditions
 - Determine required recirculation rate and regeneration energy compared to SOTA
 - Quantify and benchmark CO_2 and H_2S removal in comparison to SOTA •
- ✓ Performance & secondary property evaluation of anhydrous amine candidates

Technological Fit

 \checkmark Determine overall compatibility with existing gas processing plant configurations and what configurational changes would be necessary for implementation in gas processing plants

Economics

- ✓ Cost-benefit analysis
- ✓ Commercial viability

CHAMPIONX

Technology Background: High Pressure CO₂binding organic liquids (CO₂BOL-HP) Pacific **Northwest**

Water-lean solvents for pressure swing CO₂ absorption with potential application in natural gas clean up

• DMEA-CO₂ alkylcarbonate confirmed by high pressure NMR &

Energy. & Env. Sci. (2011), 4, 480-484.

Operando NMR Spectroscopy

Pacific

Carbon dioxide uptake for CO₂BOL-HP at 300 psig CO₂ (25 °C)

Material	CO ₂ (psig)	Cher	nical	Phys	Total	
		X _{CO2}	wt.%	X _{CO2}	wt.%	wt.%
DMEA	300	0.244	10.7 %	0.204	9.1 %	19.8 %
DEEA	300	0.209	7.2 %	0.223	8.7 %	15.9 %
DIPEA	300	0.140	4 %	0.430	12 %	16 %

- ► CO₂BOL-HP binds CO₂ both Chemically and physically
- Ideal candidate for removing CO₂ from natural gas with low regeneration energy

Water-Lean Solvents are Viable for CO₂ & H₂S Separations from Natural Gas

Anhydrous EDEA absorbs H₂S more strongly than physical solvents but weaker than chemical solvents.

Anhydrous EDEA absorbs CO₂ stronger than physical solvents but weaker than chemical solvents.

water-lean solvents for high-pressure natural gas separations can be used for syngas and natural gas clean up

Mathias et al. Ind. Eng. Chem. Res., (2013), 52, 17562–17572

Cantu, D. et al ChemSusChem. 2020, 13, 3429, and Zheng, R. F. et al. Energ Environ Sci 2020, 13, 4106

9

CO₂ Uptake capacity for thermal swing Pacific absorption (TSA) solvents compared to aMDEA

Gravimetric CO₂ uptake for DA and AP show comparable CO₂ capacity to aMDEA

	25 bar, RT, Gravimetric (~23 °C)								
Gas mix	DA Diamine		AP Aminopyridine		aMDEA		Run time		
Mol%	Wt.%	Mol%	Wt.%	Mol%	Wt.%	Mol%			
100% CO ₂	26.3	129.5	25.5	103.7	19.2	100.0	18h		
50% H ₂ 50% CO ₂	17.9	88.1	18.4	74.9	18.3	95.4	18h		
54% N ₂ 46% CO ₂	13.3	65.5	17.7	72.2	18.9	98.9	18h		
2.4% CO, 97.6 % CO ₂	18.0	89.4	23.3	94.9	20.1	104.9	18h		
1% CO 41 % CO _{2,} 58 % H ₂	18.7	91.7	18.0	73.5	18.7	97.6	22h		
21 % N ₂ 18% CO ₂ 61% H ₂	14.1	69.2	15.0	61.2	17.3	90.6	18h		

Unexpected Phenomena

Water-lean Diamine (DA) and aminopyridine (AP) solvents exhibited unprecedented behavior under syngas conditions.

- Thermal-swing solvents immediately glassify at >1 atm CO_2 pressure.
- CO₂ becomes invisible to NMR and is unable to be detected.

Custom Pressure Swing Absorption Solvent Pacific (PSA-1) Developed

Applying our learnings of post-combustion solvent molecular design to have high uptake with low viscosity.

Novel PSA Solvent (PSA-1)

Assessing CO₂ Uptake for solvent blends

Comparing capacity of pressure swing and thermal swing solvents DA:PSA-1 indicates that a blend may be the best option.

	25 bar, RT, Gravimetric (~23 °C)								
Gas mixer Mol%	DA		50:50 DA:PSA-1		65:35 DA:PSA-1		80 DA:P		
	Wt.%	Mol%	Wt.%	Mol%	Wt.%	Mol%	Wt.%		
100% CO ₂	26.3	129.5	7.6	36.4	10.8	52.4	19.3		
50% H ₂ and 50% CO ₂	17.9	88.1	10.3	49.4	13.7	66.2	13.6		
100% H ₂			0.02		0.2		0.3		

- No significant loss in CO₂ capture from binary gas mixture
- Negligible H₂ solubility observed

PSA-1/DA 90/10 solvent can remove 97.5% CO₂ with reboiler heat consumption 0.81 GJ/tonne CO₂ which is 47% lower than that of aMDEA from syngas

Operando NMR Spectroscopy

Advantages

- Rapid solvent screening, VLE data can be obtained using 1 mL per sample
- Provides H₂, CO₂ and CO solubility/uptake in solvent

Limitations

- High pressure NMR has poor solvent mixing
- Cannot measure other physical properties such as, viscosity, vapor pressure and density

Operando NMR Spectroscopy

Another method for measuring VLE, viscosity, density and vapor pressure is needed.

High Pressure PVT System

- Unique experimental capability for comprehensive and facile solvent property data collection on only 50 cc liquid sample.
- High pressure VLE data from PT_{xy} cell measurements: up to 1,000 psi at 10°C-120°C with GC/MS gas phase sampling.
- Simultaneous absorption rate and mass transfer evaluations along with VLE on solvent samples using an internal Wetted Wall Contactor (WWC).
- Simultaneous viscosity measurement on CO₂ loaded sample, expandable to other physical properties, e.g., density.

Hi-PVT System Validation

- VLE for known PSA solvent propylene carbonate was used for system validation
- Data is reproducible, similar results for 03-27-23 and previously collected data 10-21-20
- Data matches literature and previous data when solvent swelling is accounted for.

Ref: Ind. Eng. Chem. Res. 2021, 60, 8375-8385

Pacific Northwest

Hi-PVT Cell Validation Using aMDEA

VLE Data Comparison at 40°C - HiPVT vs. Literature

CO₂ Loading, mol/mol_{MDEA+PZ}

- Bishnoi 2002 (7.77m MDEA, 1.16m PZ)
- Speyer 2010 (7.94m MDEA, 0.96m PZ)

- The equilibrium CO₂ partial pressure for aMDEA obtained from Hi-PVT agree with published literature data and Aspen Plus simulations at lower partial pressures
- Data validates the Hi-PVT cell against a chemical absorption solvent aMDEA.

Pacific Northwest

Evaluating CO₂BOL-Hp for Natural Gas Sweetening

- Collect VLE and viscosity data on selected solvent formulations over ranges of temperatures, pressures and gas loading
 - Pure component gas solubility
 - On either purely physical or blended mixture of physical/chemical capture solvent
- Obtain VLE of natural gas simulant up to 1000 psig:
 - CH₄ 94.3%, $CO_{2} - 4\%$ N2 – 1% $C_2H_6 - 0.6\%$ $C_3H_8 - 0.1\%$
 - $H_2S 20 ppm$
- Perform preliminary TEA using ASPEN Plus to assess solvent performance in natural sweetening

PSA-1 CO₂ Solubility

- CO₂ VLE data collection limited to lower pressure target (quicker turnaround with experiments)
- Pure PSA-1 has better solubility of CO₂ than propylene carbonate
- Viscosity of physical solvents decreasing with increasing CO₂ loading.

CH^₄ Solubility for PSA-1 and DA

- Solubility of CH₄ is lower than CO₂ at least at low loadings
- CH₄ solubility will change in gas mixture like CO₂ as solvent will become more polar
- Viscosity of physical solvents decrease with increasing CH₄ loading due to dissolved CH₄
- Solubility of CH₄ in DA is similar to that of PSA-1

Model vs Experimentally Measured VLE

- Property model of 90-10 PSA-1-DA -CO₂ system developed for syngas was updated for natural gas.
- ASPEN Plus simulation using the updated model gives, VLE curves that match experimental data

CHAMPIONX

- o 90-10-40 C Old Exp
- 90-10-40 C New Exp
- 90-10-50 C Old Exp
- O 90-10-80 C Old Exp
- 90-10-50 C Model
- 90-10-80 C Model

or natural gas. imental data

Blend Optimization – VLE for DA/PSA-1

- 60-40 wt.% DA-PSA-1 measured at 46 °C, lowest temperature from flowsheet simulation.
- 70-30 wt.% DA-PSA-1 shows higher CO₂ solubility and reasonable maximum viscosity <20 cP

ASPEN Plus Modeling to Assess Formulation Performance

Stoichiometry was updated as the reaction starts move from 2:1 carbamate to1:1 carbamic acid at high pressure

 $2 DA + CO_2 <--> DA^+ + DACOO^ DA + CO_2 < --> DA-COOH$

- P-90D40
- P-90D50
- P-90D80
- P-30D32
- P-30D45
- P-30D57
- P-30D77
- 90D40-New
- 90D50-Old
- 90D80-0ld
- 30D32-New
- 30D45-New
- 30D57-New
- 30D77-New
- aMDEA-39

April 18, 2024

Pacific

ASPEN Plus Modeling to Assess Formulation Performance – Zero Retrofit Brownfield Case

Updated process model with the same configuration, column geometry, operating condition and target as the plant data

- Assuming zero retrofit
- NG (CH₄ 94.3%, CO₂ 4%, N₂ 1%, H₂S 20 ppm)
- \ge >50% CO₂ capture and > 80% H₂S capture

ASPEN Plus Modeling to Assess Formulation Performance – Zero Retrofit Brownfield Case

	Plant data aMDEA	Simulated aMDEA	70% DA / 30% PSA-1	Relative Changes	
CO ₂ in clean gas (mol%)	1.89	1.79	2.00		
Extend of carbon capture (%)	53	55	50	-5.7%	
Lean solvent CO ₂ loading (mol/mol)	0.003	0.003	0.018		
Rich solvent CO ₂ loading (mol/mol)	0.374	0.397	0.313		
L/G ratio (wt/wt)	0.79	0.78	0.83	+5.1%	
Absorber bottom temperature (°F)	109	106	107		
Stripper bottom temperature (°F)	258	256	256		
Exchanger duty (MMBtu/h)	33.66	25.82	24.84		
Stripper reboiler duty (MMBtu/h)	50	48.81	31.02	-38.0%	
Amine Soln Pump, P-2413 (kW / cP)	NA / 1.64	33 / 1.82	38 / 0.86		
Amine booster pump, P-2405AB (kW / cP)	NA / 3.3	467.2 / 3.94	500 / 2.16		
Rich solvent viscosity at absorber (cP)	5.08	5.64	13.5		
LMTD of cross exchanger (°F)	66.7	66.7	65.4		
Absorber approach to flood (%)		57.3	64.3	+12.2%	
Stripper approach to flood (%)		40.4	20.3	-49.8%	
W_Reboiler (kJ _e /mol CO ₂)		38.46	25.29	-34.2%	
W_Pump (kJ _e /mol CO ₂)		7.26	7.78	+7.2%	
W_Total (kJ _e /mol CO ₂)		45.71	33.06	-27.7%	
Utility cost @ full scale (MM\$/year)		1.39	1.00	-27.7%	

Fixed Variables

- our gas flowrate
- our gas composition
- olumn size
- bsorber pressure
- ean return temperature
- tripper pressure
- eboiler temperature

Summary

- ↑ in L/G ratio
- $\uparrow \text{ in pumping}$
- %↓ in reboiler duty
- % ↓ in utility cost

FWP 80526 Milestone Status

Milestone		Estimated
Number	Milestone Description	Completion Date
1	Develop amine solvent with high acid gas removal performance when both fresh and aged with minimal hydrocarbon slip compared to aMDEA SOTA solvent	June 30, 2023
2	Demonstrate high H_2S and CO_2 selectivity without increase in circulation rate compared to aMDEA	September 30, 2023
3	Demonstrate solvent with 70% lower amine degradation rate and robust to corrosion and contaminants	December 30, 2024
4	Develop amine solvent with <50% regeneration energy compared to the SOTA	September 30, 2023
5	Demonstrate that the new solvent can be retrofitted to existing gas plants without changes to configuration	September 30, 2023
6	Perform preliminary techno-economic analysis to demonstrate >10% cheaper cost and energy benefits compared to SOTA	September 30, 2023

CHAMPIONX

- Collected VLE and viscosity for PSA-1 solvent in CH_4 H_2S and CO_2 .
- Developed a simulation model that can predict VLE and viscosity as a function of gas loading
- Applied the regressed model from VLE for individual components to optimize the best blend formulation for drop-in replacement of aMDEA
- Identified 70/30 DA/PSA-1 as the best formulation for natural gas sweetening ullet
- 70/30 DA/PSA-1 solvent requires **34% lower reboiler duty** compared to SOTA
- 70/30 DA/PSA-1 solvent can be **retrofitted to existing gas plants** without changes to configuration
- Preliminary TEA shows utility cost for 70/30 DA/PSA-1 solvent is **28% lower** than SOTA •

April 18, 2024

Acknowledgements

Funding

FWP 80526

CHAMPIONX

Solvent Development

Property Testing & Engineering

Team

PNNL

Phillip Koech Deepika Malhotra Jared Kroll

PNNL

David Heldebrant Dushyant Barpaga Feng (Richard) Zheng Andy Zwoster Abhishek Kumar

CRADA 579

Techno Economic Analysis

Champion X

Caleb Clark Mathew Trevino Miguel Balzan

PNNL Yuan Jiang

Thank you

Phillip Koech

SCIENTIST

Phone: 509-372-6891 Phillip.Koech@pnnl.gov

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352

www.pnnl.gov

Back up Slides

April 18, 2024

PNNL is operated by Battelle for the U.S. Department of Energy

Preliminary Sensitivity Study

Lean loading = 0.01

L/G Ratio

Rich Loading

10.0 0.40 9.0 0.35 L/G Ratio (wt/wt) Rich solvent viscosity (cP) 8.0 0.30 7.0 0.25 6.0 5.0 0.20 4.0 0.15 3.0 pe 0.10 2.0 0.05 년 1.0

Pacific

0.0

20% 30%

40%

50%

60%

PSA-1 lending Ratio (wt%)

70%

Northwest

- Higher DA blending ratio is preferred
- L/G ratio decrease with increased DA ratio

0.00

80% 90%

CHAMPIONX

aMDEA Rich loading = 0.37Rich viscosity $\approx 1 \text{ cP}$ L/G ratio = 0.79 Reg temp = 125 °C Reg pressure = 2 bai Reg duty = 4.55W total = 45.7

High DA blending ratios make the L/G ratio closer to aMDEA baseline, which also gives a lower energy consumption^{18, 2024}

31