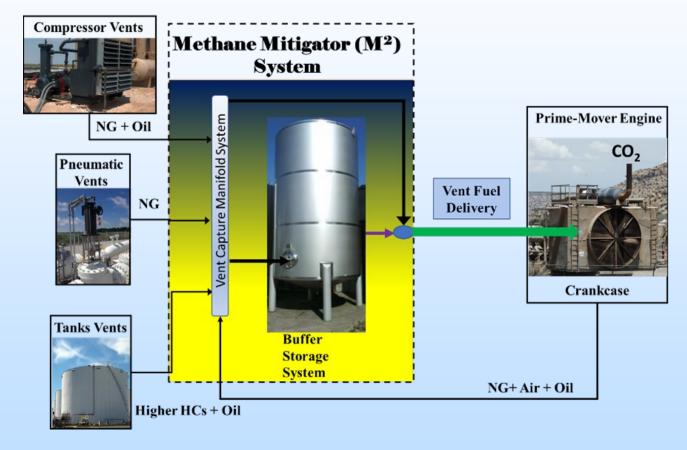
Methane Mitigator

Development of a Scalable Vent Mitigation Strategy to Simultaneously Reduce Methane Emissions and Fuel Consumption from the Compression Industry DE-FE0031865

> Derek Johnson, PhD, PE Chris Ulishney, PhD West Virginia University

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 2-4, 2024


Project Overview

- Funding DOE: \$1,498,405, Cost Share: \$433,093
- Overall Project Performance Dates
 - Original: 3/20/20 to 3/19/23
 - Current: 3/20/20 to 3/19/25
- Project Participants
 - WVU PI Derek Johnson, Co-PI Andrew Nix, Nigel Clark (NEW Dr. Chris Ulishney)
 - Caterpillar Michael Bardell
 - Energy Environmental Analytics (E2A)
- Overall Project Objective
 - Develop a stand-alone vent mitigation system and fuel delivery control system capable of consuming transient vent gas emissions in well site engines to reduce GHG and other pollutants.

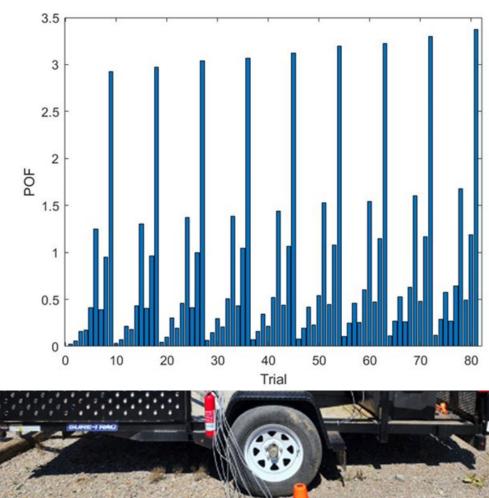
Technology Background

Build On and Integrate Current Technologies

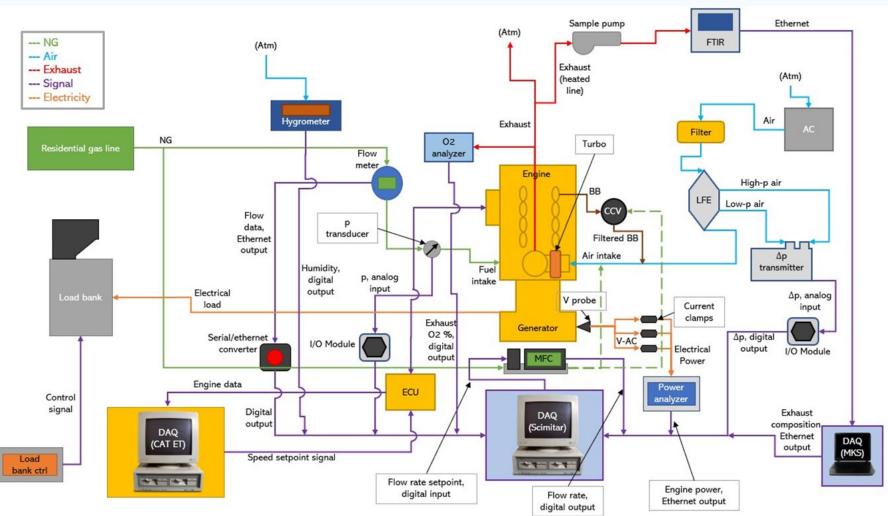
- Closed Crankcase Ventilation
- Dual fuel natural gas fumigation systems

Technical Approach/Project Scope

- 1) Literature review
 - Most recent data on sources
- 2) Filling gaps
 - New measurements
 - New activity data
 - Verification of "existing" data estimates
- 3) Laboratory R&D
 - Selection of representative engine technology CAT G3508J
 - Baseline characterization
 - Evaluation of aftermarket CCV
 - Modification and redesign
 - Inclusion of other streams


- 4) Modeling
 - Current and new data
 - Estimation of "methane" recovery as potential fuel offset
 - Time varying volumes, compositions, heating values, MN
 - Sizing tool scenario capabilities
- 5) Technology Demonstration
 - Mimic real-world scenarios in laboratory
 - "Improved" system

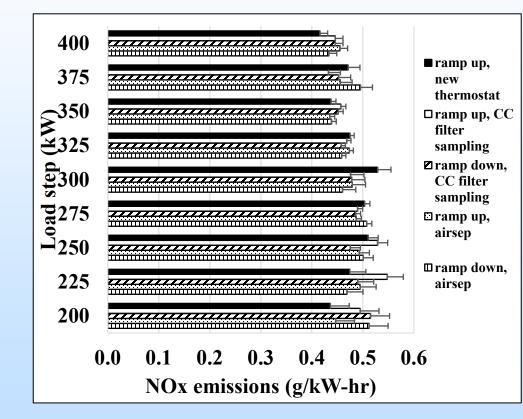
STEAM TANKS – DE-FE0032299

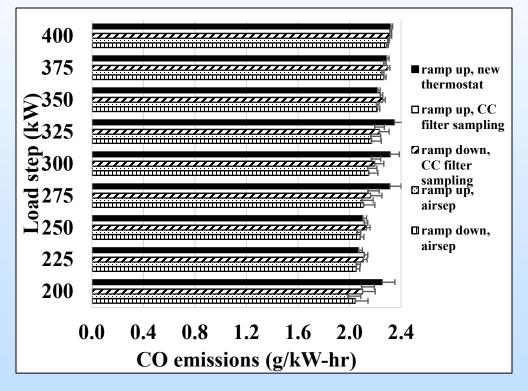

Technology Background

Commonly Vented Sources of Methane in Compression Industry

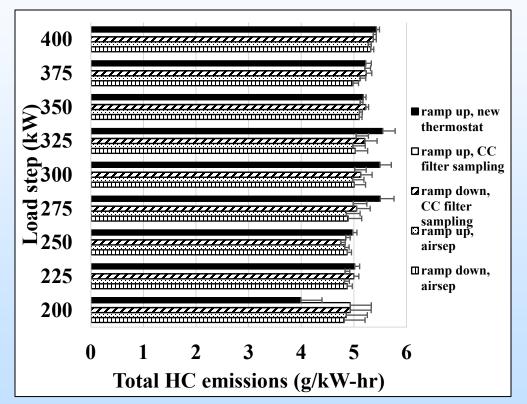

- Engine crankcases vented to atmosphere
- Compressor vents vented to atmosphere
- Pneumatic controllers (PCs) vented to atmosphere
- Liquid torage tanks
 C tanks vented to atr e, combustor, or VRU
 I c ater tanks – primarily
 - vented to atmosphere

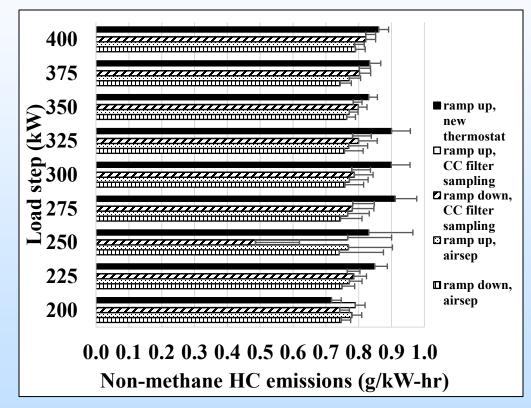
M² R&D

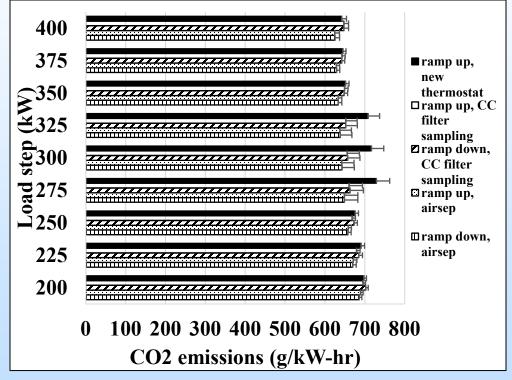

- Baseline testing completed
 - o 200 to 400 kW loads
- AirSep durability testing completed (in part)
 - \circ $\,$ 60 hours running at 300 kW load $\,$
 - Collected compressor impeller images to verify oil removal efficiency
 - Pre-AirSep and Post-AirSep oil sampling
 - CCV flowrate determination using LFE

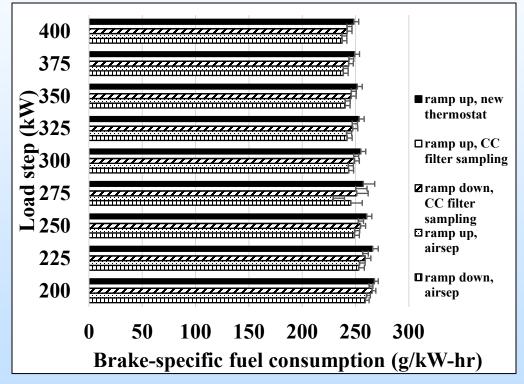


R&D – Baseline and AirSep


- \circ Baseline testing vs AirSep
 - 200 to 400 kW loads
- \circ Low NO_x standard of 0.67g/kW-hr
- FTIR results show NO_x at or below expected value
- AirSep system did not affect NO_x emissions beyond variations

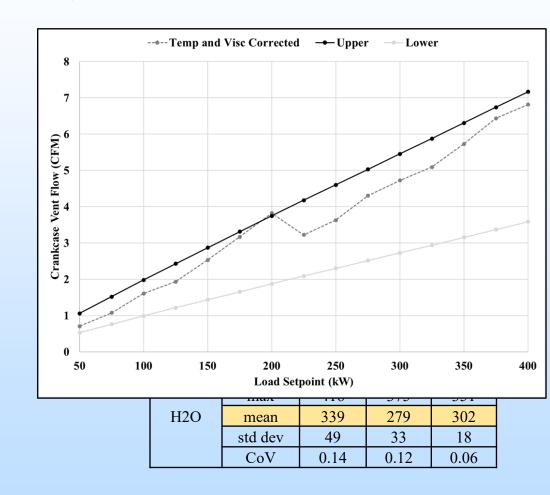

- Baseline testing vs AirSep
 - 200 to 400 kW loads
- CAT data suggests CO to be 3.2 g/kW-hr at rated power
- CO data from FTIR was below expected CO levels for all loads
- AirSep system slightly decreased CO emissions for some load steps but was within the standard deviation bands of baseline tests


- Baseline testing vs AirSep
 - 200 to 400 kW loads
- THC at rated power expected to be 6.84 g/kW-hr
- Average THC values ~5 g/kW-hr, below expected level
- As expected, majority of HC was methane (>90%)
- AirSep system did not impact THC emissions


- Baseline testing vs AirSep
 - 200 to 400 kW loads
- NMHC at rated power expected to be 1.0 g/kW-hr
- NMHC data from FTIR varied between 0.7 and 0.9 g/kW-hr
- Likely fuel differences, research fuel was 96% methane with few percent ethane and little to no higher alkanes
- AirSep system slightly decreased NMHC for most load steps but was within standard deviation bands of baseline tests

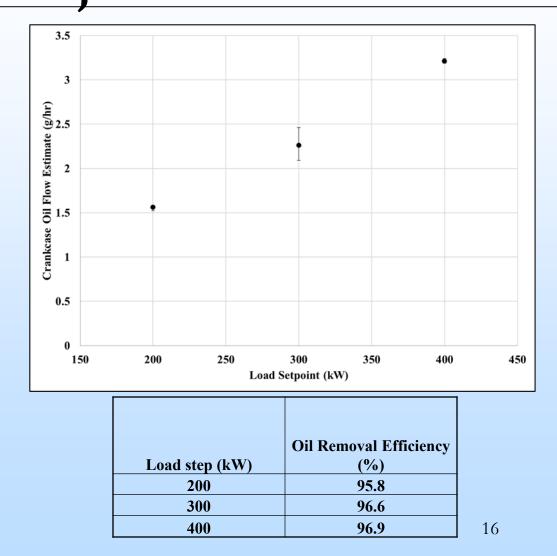
- Baseline testing vs AirSep
 - 200 to 400 kW loads
- CO₂ at rated power expected to be 695 g/kW-hr and at 50% load 630 g/kW-hr
- CO₂ data from FTIR varied between 700 and 640 g/kW-hr, respectively
- Slight CO₂ reductions under review during AirSep tests to determine statistical significance

- Baseline testing vs AirSep
 - 200 to 400 kW loads
- BSFC expected from CAT data ranges from 268 to 241 g/kW-hr from 50 to 100% load, respectively
- BSFC shows an average reduction of ~2.4% with AirSep installed over the varied load steps
- BSFC reduction attributed to combustible fuel being recirculated back to intake with AirSep installed (methane in combustion blowby)

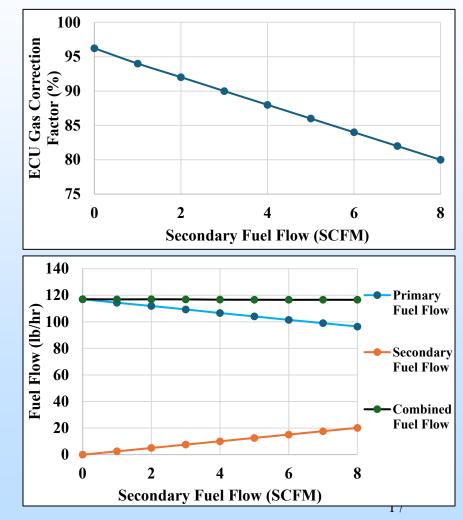


- CAT ET data comparison of baseline and AirSep data at 300 kW load
 - Baseline repeated 5 times
 - AirSep tests repeated 7 times
 - o Deviation taken among repetitions
 - 0.4% reduction in fuel flow, 1% increase in intake manifold pressure, and 13.2% decrease in detonation with AirSep installed

		AFR act	ECT (F)	NOx (ppm)	Intake Flow (lb/hr)	Engin e Load (%)	Oil P (PSI)	Oil T (F)	Speed (RPM)	Throt t Valve DP (PSI)	Fuel Temp (F)	Fuel Valve DP (PSI)	Fuel Valve Pos (%)	Fuel Flow (lb/hr)	Thrott Pos (%)	Intake Manifol d P (PSIA)	Turbo Bypass Pos (%)	Turbo Out (F)	Det	Exh Port Cyl 1 (F)	Gas corr facto r
Baseline Repeat statistics	mea n	26.73	184	74	4331	72	72	189	1199	6	80	2	25	156	39	32	20	799	0.0022	1078	97
	max	27.3	185	118	4546	76	75	190	1216	7	82	2	26	163	43	34	27	808	1	1083	99
	min	26.2	183	46	4112	67	70	183	1184	4	75	2	23	150	36	30	15	790	0	1071	96
	std	0.07	0.82	0.59	9.42	0.19	0.20	0.35	0.10	0.002 4	1.98	0.00	0.34	0.37	0.19	0.36	1.88	3.74	0.0006	3.36	0.30
Airsep Repeat statistics	mea n	26.87	184	74	4338	72	72	189	1200	6	81	2	25	156	39	32	20	796	0.0019	1077	97
	max	27.3	185	106	4539	76	75	190	1215	7	86	2	26	161	42	34	26	808	1	1092	98
	min	26.4	183	48	4154	68	69	181	1185	5	70	2	23	150	36	30	15	790	0	1067	96
	std	0.06	0.6	0.2	14.4	0.2	0.2	0.8	0.1	0.0	2.3	0.0	0.2	0.4	0.2	0.2	0.5	4.3	0.0009	4.89	0.34
Percent Diff		0.54	-0.24	-0.37	0.17	0.37	-0.66	-0.11	0.01	-0.11	0.88	0.00	0.25	-0.35	0.31	1.05	-0.03	-0.36	-13.17	-0.06	-0.63
																				4	


M² R&D Baseline – CC Understanding

- CCV flowrates and emission analysis
 - FTIR collected emission data of CCV flow
 - Emission rates calculated in g/hr
 - Short term LFE measurements
- High variability in emissions water concentration in CCV influenced by adsorption from oil in crankcase and did not directly increase with load
- \circ Higher fractions of blowby gas at higher loads increase CO_2 and CH_4


M² R&D

- CCV out oil concentration and AirSep oil concentration reduction
 - Oil collected on weighted filters for analysis
 - Measured flow and 5minute duration for sample mass
 - Pre-AirSep oil sample over saturated the filter
 - Repeat of Pre-AirSep sample collection with shorter duration required, will likely increase filter efficiency to above 99%

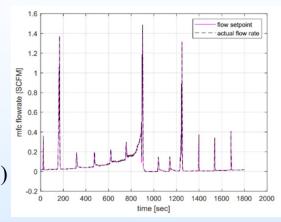
M² R&D – Compressor Vent "Fuel Stream"

- Impact of adding secondary fuel source to engine intake
 - 1 SCFM increments (key points of 2, 4, 6, etc. to match OOOOb and California compressor limits)
 - Reduction in primary fuel flow equal to the amount added as secondary fuel, total fuel flow remains 116-117 lb/hr
 - Engine changes the gas correction factor in response, assumes fuel quality is changing rather than additional fuel delivery
 - NO_x remains stable (+/- 0.3 ppm), engine load stable (+/- 0.6% engine load), slight increase in intake manifold pressure (+0.2 PSIA at 8 SCFM secondary fuel flow)

Plans for future testing/development/ commercialization

a. In this project

- Continued AirSep Evaluations
- Continued Compressor Vent "Fuel" Supplementation (Direct)
- Direct PC Admission Cycles
- Compressor and PC Admission to "AirSep"
- Redesigns oil rates, passive control (check valves and fail safes)


b. Other funding for continued R&D –

refinement

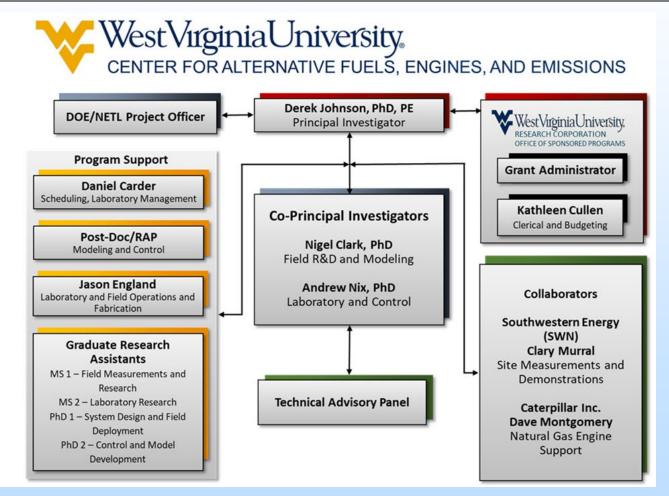
- Focus on only CCV and closed compressor vents (CCV²)
- Field deployments on multiple "engine" platforms

c. Scale-up potential, if applicable

- Current/future modeling to highlight savings
- https://netl.doe.gov/sites/default/files/netl-file/Brun.pdf
 - +15,000 upstream prime movers (small to large engines and compressors)
 - Most units 4SLB < 2000 hp
 - \circ 800-900 boosting stations
 - \circ 850 900 mainline compressor stations

Summary Slide

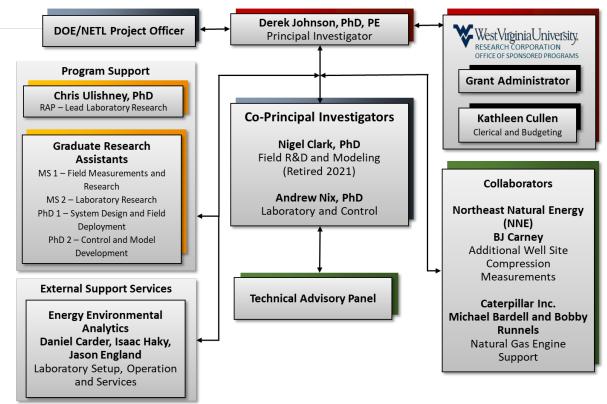
Methane Mitigator


- Verified industry rules of thumb
 - Engine crankcase total vent rates including compositions
 - Total compressor vent emissions including compositions
 - Verified and expanded on PC vent rates and behavior (6-7 continuous days)
- Tanks complex highly transient in flows and compositions and condensate tanks may be limited due to MN/HV
- Redeveloped a large, dedicated natural gas engine research laboratory
- High potential 95% (combustion efficiency) reduction in engine crankcase and compressor vents (steady)
- Current commercial closed crankcase systems
 - No negative impacts on regulated emissions
 - No negative impacts on engine operation (to date)
 - Oil removal efficiency high (>90%) but may be lower than advertised (99%)

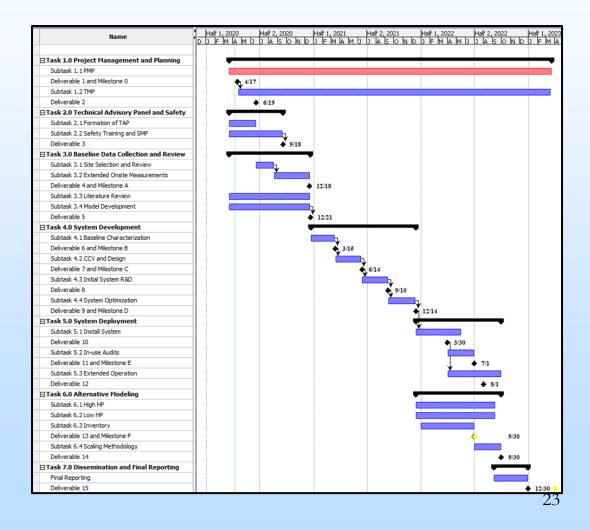
Appendix

These slides will not be discussed during the presentation but are mandatory.

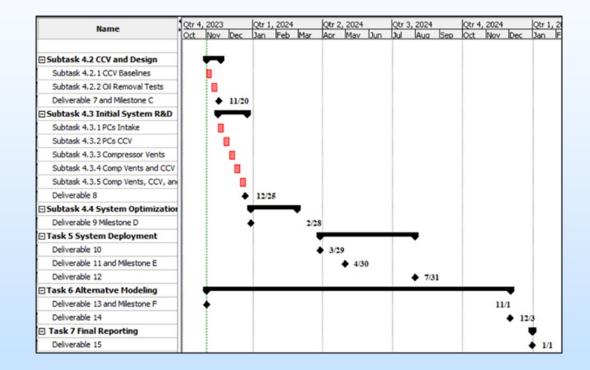
Organization Chart


Original Organization

Organization Chart


Final Organization

West Virginia University CENTER FOR ALTERNATIVE FUELS, ENGINES, AND EMISSIONS


Gantt Chart

Original Gantt Chart

Gantt Chart

 New Gantt Chart – BP 2 and 3 Focus

