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Project Overview

— Funding — DOE: $1,498,405, Cost Share: $433,093

— Opverall Project Performance Dates

* Original: 3/20/20 to 3/19/23
e Current: 3/20/20 to 3/19/25

— Project Participants

« WVU — PI — Derek Johnson, Co-PI — Andrew Nix, Nigel-Clark(NEW — Dr.
Chris Ulishney)

 Caterpillar — Michael Bardell
» Energy Environmental Analytics (E2A)

— Overall Project Objective

« Develop a stand-alone vent mitigation system and fuel delivery control
system capable of consuming transient vent gas emissions in well site
engines to reduce GHG and other pollutants. 2



Technology Background
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Technical Approach/Project Scope

1) Literature review 4) Modeling
*  Most recent data on sources *  Current and new data
* Estimation of “methane”
2) Filling gaps recovery as potential fuel offset
* New measurements  Time varying volumes,
o New activity data compositions, heating values,
o Verification of “existing” data MN
estimates *  Sizing tool — scenario
capabilities

3) Laboratory R&D
* Selection of representative engine  5) Technology Demonstration

technology — CAT G3508J *  Mimic real-world scenarios in
* Baseline characterization laboratory
*  Evaluation of aftermarket CCV *  “Improved” system

*  Modification and redesign
o Inclusion of other streams 4
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Technology Background

Commonly Vented Sources of Methane
in Compression Industry

* Engine crankcases — vented to
atmosphere

* Compressor vents — vented to
atmosphere

* Pneumatic controllers (PCs) — vented
to atmosphere

anks — vented to —
, combustor, or VRU [t
ter tanks — primaril --"""
vented to atmosphere 5




Progress and Current Status of
Project

M2 R&D
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Progress and Current Status of
Project

M? R&D — Baseline and AirSep

o Baseline testing completed
o 200 to 400 kW loads
o AirSep durability testing completed (in part)
o 60 hours running at 300 kW load
o Collected compressor impeller
images to verify oil removal efficiency
o Pre-AirSep and Post-AirSep oil
sampling
o CCV flowrate determination using
LFE




Progress and Current Status of

Project
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Progress and Current Status of
Project

M2 R&D - Baseline and
AirSep

o Baseline testing vs AirSep
o 200 to 400 kW loads

o CAT data suggests CO to be 3.2
g/kW-hr at rated power

o CO data from FTIR was below
expected CO levels for all loads

o AirSep system slightly decreased
CO emissions for some load steps
but was within the standard
deviation bands of baseline tests
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Progress and Current Status of
Project

M2 R&D - Baseline and
AirSep

o Baseline testing vs AirSep
o 200 to 400 kW loads

o THC at rated power expected to
be 6.84 g/kW-hr

o Average THC values ~5 g/kW-hr,
below expected level

o As expected, majority of HC was
methane (>90%)

o AirSep system did not impact THC
emissions
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Progress and Current Status of

AirSe

Project
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Progress and Current Status of

Project
M? R&D - Baseline and
AirSep
o Baseline testing vs AirSep 400
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Progress and Current Status of

Project

M2 R&D - Baseline and
AirSep

O

O

Baseline testing vs AirSep

o 200 to 400 kW loads
BSFC expected from CAT data
ranges from 268 to 241 g/kW-hr
from 50 to 100% load, respectively
BSFC shows an average
reduction of ~2.4% with AirSep
installed over the varied load steps
BSFC reduction attributed to
combustible fuel being recirculated
back to intake with AirSep installed
(methane in combustion blowby)
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Progress and Current Status of
Project

M? R&D — Baseline and AirSep

o CAT ET data comparison of baseline and AirSep data at 300 kW load
o DBaseline repeated 5 times
o AirSep tests repeated 7 times
o Deviation taken among repetitions
o . o/ : . : o
o 0.4% reduction in fuel flow, 1% increase in intake manifold pressure, and 13.2%
decrease in detonation with AirSep installed
. Throt
Engin Fuel Fuel Fuel Intake Turbo Exh Gas
AFR ECT (NOX h;;ake e Oil P Oil T (slsliij[l th "IF s Valve Valve Flow Thrott Manifol | Bypass Turbo Det Port corr
act (F) pl;’m (lb‘;f:) Load | (PSD | (F) ) S; ¢ fg)‘p DP Pos | (Ib/hr | Pos (%) dp Pos | Out(F) © Cyl1 | facto
(%) (PSD) (%) ) (PSIA) (%) ) r
(PSD)
m;aa 26.73 184 74 4331 72 72 189 1199 6 80 2 25 156 39 32 20 799 0.0022 1078 97
B]fseli“e max | 27.3 185 118 4546 76 75 190 1216 7 82 2 26 163 43 34 27 808 1 1083 99
epeat
Statipstics min | 262 [ 183 46 | 4112 | 67 70 183 | 1184 4 75 2 23 150 36 30 15 790 0 1071 | 96
std 0.07 0.82 0.59 9.42 0.19 0.20 0.35 0.10 0'302 1.98 0.00 0.34 0.37 0.19 0.36 1.88 3.74 0.0006 3.36 0.30
m;:a 26.87 184 74 4338 72 72 189 1200 6 81 2 25 156 39 32 20 796 0.0019 1077 97
ﬁ:;:; max | 27.3 185 106 4539 76 75 190 1215 7 86 2 26 161 42 34 26 808 1 1092 98
statistics | min 26.4 183 48 4154 68 69 181 1185 5 70 2 23 150 36 30 15 790 0 1067 96
std 0.06 0.6 0.2 14.4 0.2 0.2 0.8 0.1 0.0 2.3 0.0 0.2 0.4 0.2 0.2 0.5 43 0.0009 4.89 0.34
P%?fm 0.54 -0.24 0.37 0.17 0.37 -0.66 0.11 0.01 0.11 0.88 0.00 0.25 -0.35 0.31 1.05 -0.03 -0.36 -13.17 0.06 | -0.63

-,
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Progress and Current Status of
Project

M2 R&D Baseline — CC
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Progress and Current Status of

M2 R&D

O

CCV out oil concentration and
AirSep oil concentration
reduction

O

Qil collected on weighted
filters for analysis
Measured flow and 5-
minute duration for
sample mass

Pre-AirSep oil sample
over saturated the filter
Repeat of Pre-AirSep
sample collection with
shorter duration required,
will likely increase filter
efficiency to above 99%
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Progress and Current Status of
Project

M? R&D — Compressor Vent
“Fuel Stream”

« Impact of adding secondary fuel source to
engine intake

O

1 SCFM increments (key points of 2,
4, 6, etc. to match OOOOb and
California compressor limits)
Reduction in primary fuel flow equal
to the amount added as secondary
fuel, total fuel flow remains 116-117
Ib/hr

Engine changes the gas correction
factor in response, assumes fuel
quality is changing rather than
additional fuel delivery

NO, remains stable (+/- 0.3 ppm),
engine load stable (+/- 0.6% engine
load), slight increase in intake
manifold pressure (+0.2 PSIA at 8
SCFM secondary fuel flow)
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Plans for future testing/development/

commercialization

In this project

Continued AirSep Evaluations

Continued Compressor Vent “Fuel” Supplementation (Direct)
Direct PC Admission Cycles

Compressor and PC Admission — to “AirSep”

Other funding for continued R&D —

refinement
. Focus on only CCV and closed compressor vents (CCV?)
. Field deployments on multiple “engine” platforms

Scale-up potential, 1f applicable

. Current/future modeling to highlight savings
0 https://netl.doe.gov/sites/default/files/netl-file/Brun.pdf
o +15,000 upstream prime movers (small to large engines and
COmpressors)
= Most units 4SLB <2000 hp
o 800-900 boosting stations
o 850 —900 mainline compressor stations

Redesigns — oil rates, passive control (check valves and fail safes) °

mfc flowrate [SCFM)
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Summary Slide

Methane Mitigator
o Verified industry rules of thumb
= Engine crankcase total vent rates — including compositions
= Total compressor vent emissions — including compositions
= \Verified and expanded on PC vent rates and behavior (6-7 continuous days)

o Tanks complex — highly transient in flows and compositions and condensate tanks
may be limited due to MN/HV

o Redeveloped a large, dedicated natural gas engine research laboratory

o High potential — 95% (combustion efficiency) reduction in engine crankcase and
compressor vents (steady)

o Current commercial closed crankcase systems
= No negative impacts on regulated emissions
= No negative impacts on engine operation (to date)
= QOil removal efficiency high (>90%) but may be lower than advertised (99%)
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Appendix

— These slides will not be discussed during the presentation but
are mandatory.
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Organization Chart
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Gantt Chart

Original Gantt Chart
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B Task 4.0 System Development
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Deliverable 6 and Miestone B
Subtask 4.2 CCV and Design
Deliverable 7 and Miestone C
Subtask 4.3 Initial System R&D
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Gantt Chart
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