

Microwave Catalysis for Process Intensified Modular Production of Carbon Nanomaterials from Natural Gas

DOE Project Number DE-FE-0031866

John Hu (PI) West Virginia University

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 3, 2024

Project Overview

- Funding (\$3 million DOE Funds and \$790,000 Cost Share)
- Project Performance Dates: March 20, 2020 to March 19, 2023

Project Participants:

Pacific Northwest National Laboratory
North Carolina State University
H-Quest Vanguard, Inc.
SolCalGas
C4-MCP

Project Overview Goals and Objectives

The objective of the project is to develop a process intensified modular technology to convert flare gas or stranded gas to carbon nanomaterials and hydrogen (H_2) . The proposed project is based on a WVU patented technology:

 $CH_4 \rightarrow H_2 + C$ (CNT, Carbon Fibers)

Major focus:

- Process intensification at modular scales with the objective of deployment at flare gas location.
- Demonstrate the modular unit operation having a large turndown ratio which can operate under fluctuation of gas flow rate and composition.

Project Overview

Electromagnetic sensitive catalyst development and scale up.
 Microwave plasma pilot reactor test at capacity of 50-100 cft/hour (18-72 kg carbon nano materials/day)
 Technoeconomic analysis.
 Technology-to-market strategy, plan, and commercialization.

Technology Background-The Need

Shale Gas Exploration

Wellhead Equipment (Bakken, ND)

Natural gas flaring, venting up in Texas

The Issue of Flaring Gas

Zero-Carbon Dioxide Emission Hydrogen Production

WVU patented technology turns natural gas into hydrogen and high value carbon without carbon dioxide:

$$CH_4 \rightarrow C_s(Advnaced\ Carbon) + 2H_2$$

Scale bar = 100 nm

Technical Approach/Project Scope

Technical Approach-Microwave Catalytic Process

Fig 1. Schematic diagram of (a) conventional heating; (b) microwave heating

Fig 2. Selective material heating and reduce the bulk temperature

Approach: Overcome the Challenges

The proposed technology is based on microwave-enhanced, multifunctional catalytic system to *directly* convert the light components of stranded natural gas.

- Selective heating: T_{Metal} > T_{CNT}
- Lower activation energy

Approach: Overcome the Challenges

The proposed technology is based on microwave-enhanced, multifunctional catalytic system to *directly* convert the light components of stranded natural gas.

Novel Catalyst Synthesis for Base Growth-solving the challenge in CNT-metal separation

Technoeconomic Analysis (TEA)

TEA-Minimum Carbon Selling Price

- The crystalline carbons from our technology will need to be sold at price similar or even lower than carbon black \$0.7-1.0/kg
- We know these carbon can be sold at price much higher than carbon black.
- If benefit from CO₂ tax is considered,
 economic benefit will be even better.

*() MCSP w/ hydrogen credits Variable cost w/o credits Capital cost Other costs Hydrogen credits Minimum selling price has 15% return built in already

TEA-Minimum H₂ Selling Price

Conclusion: Hydrogen price can be lower than \$1/kg H₂

■ Variable cost ■ Carbon credits ■ Capital cost ■ Other costs • MHSP

- Minimum selling price has 15% return built in already
- Carbon tax is not included in TEA

Ind. Eng. Chem. Res. 2022, 61, 5080-5092

Progress and Current Status of Project

Accomplishments since last year's meeting.

Methane Pyrolysis Over Perovskite Type Mixed Oxides: The Effect of Non-Stoichiometry

Conditions:

Catalyst loading :200mg Reduction at 600°C for 1 hr in 10% H_2 CDM Reaction at 600°C with 90% CH_4

Key Findings:

- By inducing non-stoichiometry on the A-site of the perovskite facilitates Ni exsolution, promoting favorable conditions for the CDM reaction.
- Exceptional carbon yield of approximately 13 grams per gram of catalyst.
- Extended injections are anticipated to further elevate carbon yields.

Methane Pyrolysis Over Perovskite Type Mixed Oxides: Fresh and Post CDM samples

Fresh

Post CDM

More CNTs might be grown and the CH_4 conversion might be stable for **more then 10 hours** by reloading the grounded form of the spent catalyst.

Methane Pyrolysis Over Perovskite Type Mixed Oxides: Carbon growth

LaNiO₃

 ${\sf La}_{0.33}{\sf Ca}_{0.67}{\sf Ti}_{0.35}{\sf Ni}_{0.65}{\sf O}_3$

 $La_{0.25}Ca_{0.50}Ti_{0.35}Ni_{0.65}O_3$

Key Findings:

- The best performing perovskite (i.e. non-stoichiometric $La_{0.25}Ca_{0.50}Ti_{0.35}Ni_{0.65}O_3$) shows well defined CNTs.
- The stoichiometric $(La_{0.33}Ca_{0.67}Ti_{0.35}Ni_{0.65}O_3)$ and the base perovskite $(LaNiO_3)$ show broken CNTs.

Methane Pyrolysis Over Perovskite Type Mixed Oxides: Evolution of Carbon Growth

CDM:Post 1 hour

CDM:Post 3 hour

CDM:Post 6 hour

The best performing perovskite (i.e. non-stoichiometric $La_{0.25}Ca_{0.5}Ti_{0.35}Ni_{0.65}O_3$) shows well defined CNTs that continue to grow with near uniform morphology as the reaction proceed.

Fluidized-Bed Microwave Reactor

Reactor configurations iteratively modified to maximize plasma extents and particle interaction

General description

- Feed supplied vertically from below in either spouted or fluidized configuration;
- lonized gas (plasma) is launched • horizontally cross-axis to entrained feed;
- Exhaust entrainment and particle loss controlled by limiting gas velocities.

Instrumentation:

- Viewports for camera and spectral capture
- TC and pressure transducers downstream \bullet

Spectra

Capture

Kinetics and Process Improvement (Supporting Pilot Plant Test)

Process Scheme

Microwave Irradiation Lowers Activation Energy

Single Reactor Two-Stage Process

Second Stage Reaction-Pyrolysis of Acetylene

(a) Acetylene conversion and (b) product concentration over 10Ni-1Pd-CNT at 500 °C

Chemical Engineering Journal, 454 (2023), 140115 Applied Catalysis B: Environmental 340(2024),123255

Pilot Plant Demonstration

Reactor configuration

- 1. Gas cylinder,
- 2. Regulator
- 3. Mass flow controller
- 4. Valves
- 5. Quartz tube
- 6. Microwave generator,
- 7. Heated catalyst bed,
- **8. OES**

Natural Gas

Electricity

H Quest decarbonizes natural gas at the point of use

• Synthetic graphite, and more...

A single 1 ton-H₂/day plant eliminates emissions of ~5,000 ton-CO₂/year

System built and demonstrated in the lab; pilot deployed in the field

Footprint 20' ISO container

Equipment 36 kW 915 MHz microwave generator

Throughput 50 - 200 cubic feet/hour of natural gas

Commercial-scale microwave system

- 36 kW / 915 MHz system demonstrated in 2022
- 36 kW pilot system deployed in the field in 2023
- 100 kW system under test in the lab 2023-2024

CNT catalyst bed

Fluidized bed set up downstream of pyrolysis reactor Acetylene/hydrogen pyrolysis gas supplied to fluidized bed

Peoples Gas Pilot

36 kW / 915 MHz system containerized and deployed at a customer facility

H Quest demonstrated:

- Rapid installation (1-2 hours) with minimal infrastructure
- Remotely monitored operation at customer facility
- Conversion of pipeline-grade methane
- Production and collection of carbon materials

HQuest

Microwave plasma process development since 2014

Strong IP position and technology background

>12 granted patents in US and Canada\$3.6M in R&D projects with DOE and NSF

Start-up company on a steep commercialization trajectory

15 employees | 5,000 sq ft R&D facility in Pittsburgh, PA Natural gas conversion pilots in the field

Microwave plasma pyrolysis of natural gas

Rapid, direct energy input

Microwave energy coupling directly into the gas stream 10,000 deg/sec heating rates in small volumes

Industrial robustness

36 kW system piloted in the field 100 kW system under test in the lab

Product control and flexibility

Demonstrated selectivity control and production of carbon black, graphene, acetylene, and aromatics.

10,000 K /sec heating rate Formation of gasphase carbon Thermal insulation (not shown) maximizes conversion rate **Condensation of** carbon Output: H2 + C (~1000 C)

CAPABILITIES

H Quest technology offers:

Decarbonization of industrial processes

Electrification of heat and production of hydrogen

Immediate gains for CB sustainability

via blending methane-derived carbon black

Novel, zero-CO₂ pathways to carbon materials natural gas as a feedstock for a wide range of products

Processing of virgin and recycled CB

plasma upgrading through heat treatment of materials

Project Summary

- Gen 1 catalyst formulation Ni-Pd and Ni-Cu are developed and tested. Precious metal Pd is replaced by Cu.
- Gen 2 catalyst formulation featured "base-growth" is developed which will lower the CAPEX and OPEX.
- Demonstrate the potential of meeting DOE Hydrogen Shot goal of "1-1-1"
 Two U.S. patents, four per-reviewed journal articles and several conference papers.
 Process simulation and TEA model updated. Kinetics model has been completed.
 Microwave plasma pilot plant commissioning and testing are making progress.

Plans for future testing/development/ commercialization

□Pilot scale microwave plasma reactor test at H-Quest

Carbon characterization as electrode for electric arc steel making, additives to concrete and polymers.

- a. After this project:
 - ☐ Industrial partners
 - \square H₂ Hub
- **b.** Scale-up potential: modular approach , wellhead or stranded gas field deployment.

Outreach and Workforce Development Efforts and Achievements

□ Connection with Hydrogen Hubs in WV State.

□First generation college students in West Virginia.

□Women, minority Chemical Engineering undergraduate students are trained to operate microwave reactors.

Microwave-assisted methane pyrolysis using shale rock and promoters as catalysts (700°C, 1 atm)

(1) MRC 400D=shale rock
 (2) 10% Ni/GNP promoters + 90% shale rock
 (3) 10% FeNi/GNP promoters + 90% shale rock
 (4) GNP=graphene nanoplatelets

- 1. The rock sample obtained from shale gas drilling process has catalytic function to produce hydrogen
- Adding promoters (Fe and Ni) to the rock can boost methane conversion and hydrogen productivity.
 Promoters are cheap and can be injected to the subsurface during drilling process.
- 3. High value by-product ethylene was produced, which is "co-benefit" of in-situ hydrogen production.

