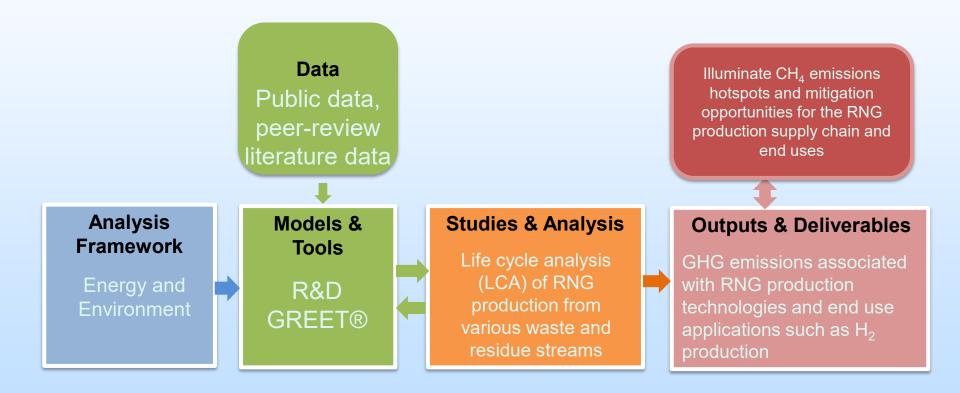
Analysis of Counterfactual Scenario Greenhouse Gas Emissions of Waster Streams for Renewable Natural Gas Production FWP-155-NJB-1034


Hao Cai Argonne National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 2-4, 2024

Project Overview

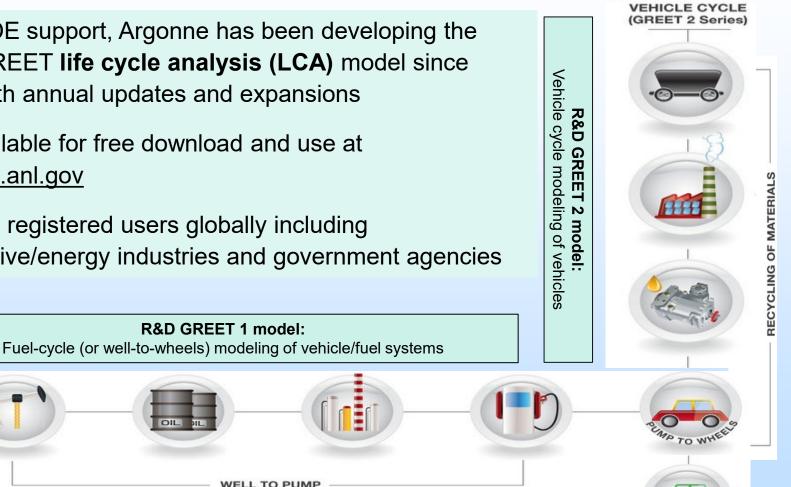
Budget	Barriers Addressed
 FECM Funding for FY24: \$150K Co-funding from HFTO for FY24: \$150K 	 Inconsistent data, assumptions, and guidelines Siloed analytical capability and suite of models and tools for evaluating sustainability
Timeline	Partners

Overall Project Objectives: Evaluate GHG emission implications of RNG production from waste and residue streams

The R&D GREET[®] (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) model

Technology Background

4


- With DOE support, Argonne has been developing the R&D GREET life cycle analysis (LCA) model since 1995 with annual updates and expansions
- It is available for free download and use at greet.es.anl.gov

FUEL CYCLE (GREET 1 Series)

>60,000 registered users globally including automotive/energy industries and government agencies

R&D GREET 1 model:

WELL TO PUMP

R&D GREET sustainability metrics include energy use, criteria air pollutants, <u>GHG</u>, and water consumption

Energy use	Air pollutants	Greenhouse gases	Water consumption
 Total energy: fossil energy and renewable energy Fossil energy: petroleum, natural gas, and coal Non-fossil energy: biomass, nuclear energy, hydro-power, wind power, and solar energy 	 VOC, CO, NOx, PM₁₀, PM_{2.5}, and SOx Estimated separately for total and urban (a subset of the total) emissions 	 CO₂, CH₄, N₂O black carbon, and albedo CO_{2e} of the five (with their global warming potentials) 	 Addressing water supply and demand (energy-water nexus)
Resource availability and energy security	Human health and environmental justice	Global warming impacts	Regional/seasonal water stress impacts

R&D GREET includes a suite of models and tools

- R&D GREET coverage
 - ✓ R&D GREET1: fuel cycle (or WTW) model of energy systems
 - ✓ R&D GREET2: vehicle manufacturing cycle and material embodied emissions
- Modeling platform
 - ✓ Excel
 - ✓ .net
 - ✓ New Generation of GREET (under development)
- Other GREET derivatives
 - ✓ 45VH2-GREET by IRS based on **GREET1**
 - ✓ CA-GREET by CARB, based on **GREET1**
 - ✓ ICAO-GREET by ANL, based on **GREET1**
 - ✓ China-GREET and MENA-GREET by ANL, with support of Aramco
 - ✓ AFLEET by ANL: alternative-fuel vehicles energy, emissions, and cost estimation

GREET use by agency

United States Production tax credits and clean hydrogen standard Government under IRA and BI

CA-GREET3.0 built based on and uses data from ANL GREET

Oregon Dept of Environ. Quality Clean Fuel Program

EPA RFS2 used GREET and other sources for LCA of fuel pathways; GHG regulations

National Highway Traffic Safety Administration (NHTSA) fuel economy regulation

FAA and ICAO AFTF using GREET to evaluate aviation fuel pathways

GREET was used for the US DRIVE Fuels Working Group Well-to-Wheels Report

LCA of renewable marine fuel options to meet IMO 2020 sulfur regulations for the DOT MARAD

US Dept of Agriculture: ARS for carbon intensity of farming practices and management; ERS for food environmental footprints; Office of Chief Economist for bioenergy LCA

Environment and Climate Change Canada for its Clean Fuel Standard

Project Scope

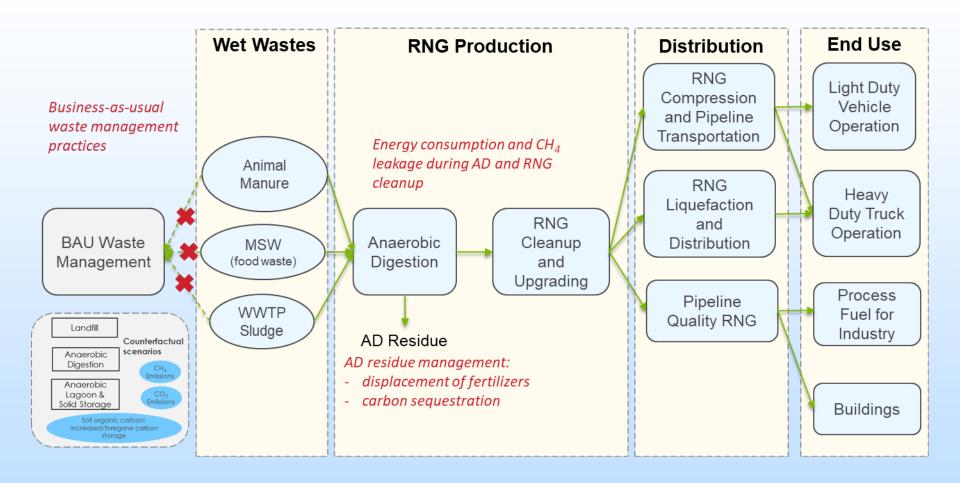
• Landfill gas

- o Flaring
- Active gas collection and controls
- **Municipal solid waste**, including food waste, yard trimmings, corrugated containers, office paper, textiles, etc.
 - o Landfill
 - Incineration
 - Composting
 - Anaerobic digestion
- Animal manure, including dairy manure, swine manure, cattle manure, etc.
 - Deep pit
 - Anaerobic lagoon
 - Liquid/slurry storage
 - Solid storage
 - o Drylot

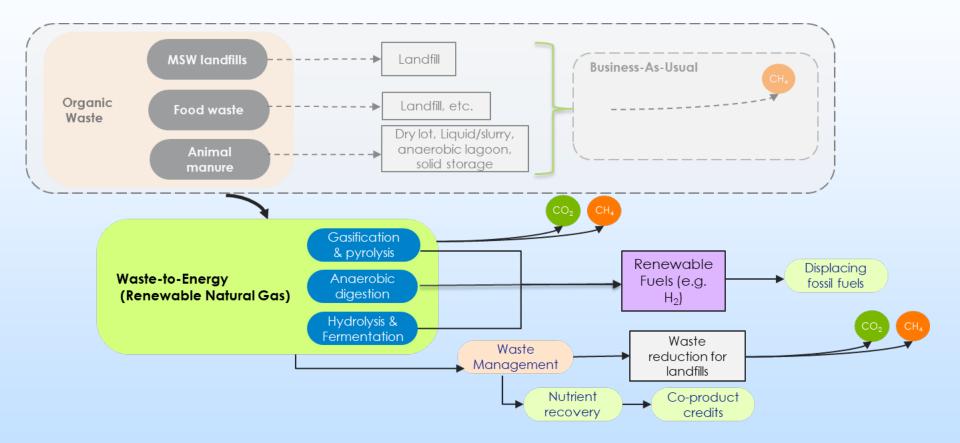
• Wastewater sludge

- Anaerobic digestion with energy and nutrient recovery
- Anaerobic digestion without energy or nutrient recovery
- o Landfill
- Incineration
- Land application
- Crop residues such as corn stover and rice straw
 - Natural decay
 - Prescribed burning
 - o Sustainable removal
- Forest residues including forest thinning
 - o Natural decay
 - Prescribed burning
 - o Sustainable removal
 - Wildfires

Project Schedule and Milestones


	FY23 Q2 Q3 Q4			FY24		F	Y25	Deliverable		
Project Task Structure			Q4	Q	Q1 Q2		Q3 Q4		Q2	
Fask 1. Landfill gas counterfactual scenario analysis.										
Milestone 1.1										Туре А
Milestone 1.2										Туре В
Task 2. Municipal solid waste counterfactual scenario analysis										
Milestone 2.1										Туре А
Milestone 2.2										Туре В
Annual milestone										Type C
Task 3. Animal manure counterfactual scenario analysis										
Milestone 3.1										Туре А
Milestone 3.2										Type B
Fask 4. Wastewater sludge counterfactual scenario analysis										
Milestone 4.1										Туре А
Milestone 4.2										Type B
Fask 5. Crop residues and forest residues										
Milestone 5.1										Туре А
Milestone 5.2										Туре В
Fask 6. GREET Development and Implementation										
Annual milestone										Туре С

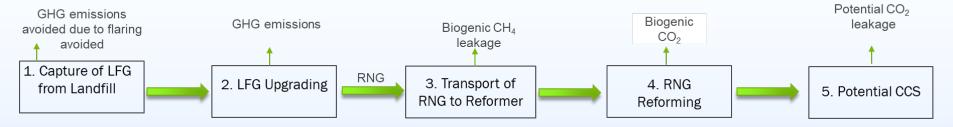
Deliverable Type A: A quantitative, statistical dataset that summarizes the BAU waste management practices with regional fidelity; **Deliverable Type B**: A quantitative analysis of GHG emissions and carbon sequestration effects associated with landfill gas counterfactual scenarios;


Deliverable Type C: A new R&D GREET model that is expanded to include analysis details and results of counterfactual scenarios. Journal submission.

GREET RNG Module

Technical Approach

LCA of RNG and Downstream Uses Need to Address Emissions Associated with Business-As-Usual (i.e., Counterfactual Scenarios)



Seq. CO2: Avoided CO2 emissions from sequestered carbon; AD: Anaerobic digestion;

Landfill gas-to-RNG & H₂ in R&D GREET

Progress

Key Steps in Landfill Gas (LFG) to H₂ Pathway

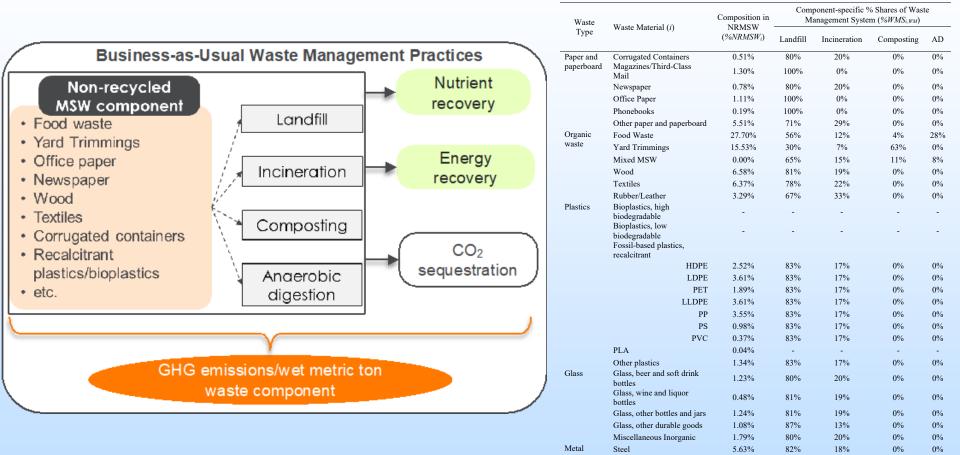
Key Assumptions of LFG Reforming in R&D GREET 2023

Step	Value	Notes
1. Capture of LFG	-0.17 kgCO ₂ e/kg-H ₂	Assumes that all LFG used would otherwise have been flared, but that ~0.2% of LFG is leaked during the flaring process. This results in -1,068 g CO_2 e/mmBtu of flared LFG that are considered avoided GHG emissions.
2. LFG Upgrading	3.02 kgCO ₂ e/kg-H ₂	Represents emissions associated with the U.S. average electricity consumption during upgrading of LFG, resulting in a carbon intensity of 19,055 g CO ₂ e/mmBtu of RNG.
3. Transport of RNG	0.71 kgCO ₂ e/kg-H ₂	Emissions associated with leakage of RNG and RNG compression for transport.
4. RNG reforming	-2.15 : 0.06 kgCO ₂ e/kg- H ₂	Range depends on whether or not steam is co-produced and valorized. Emissions from this step do not include CO_2 emissions onsite, which are comparable to CO_2 emissions that would have been generated by flaring of LFG in Step 1.

- Captured LFG that is currently flared presents an opportunity for being diverted to RNG & H₂ production.
- When captured LFG is diverted to RNG & H₂ production from being flared, it results in a small amount ¹¹ of avoided CH₄ emissions.

Technical Guideline for Landfill Gas-Derived H_2 for 45V Clean Hydrogen Provision Under the IRA

Guidelines to Determine Well-to-Gate Greenhouse Gas (GHG) Emissions of Hydrogen Production Pathways using 45VH2-GREET 2023


December 2023

2.4.3 Landfill Gas

45VH2-GREET 2023 allows users to simulate reforming of RNG derived from LFG. Background data associated with this pathway includes: (1) avoided emissions associated with the counterfactual scenario, (2) emissions associated with LFG upgrading to produce pipeline-quality gas, and (3) the amount of leakage of RNG during pipeline transport.

45VH2-GREET 2023 assumes that the counterfactual scenario for LFG gas is that the gas being consumed by a reformer would otherwise have been flared. This counterfactual scenario includes estimates of: (a) methane emissions associated with incomplete combustion of LFG during flaring, (b) N₂O emissions associated with LFG flaring, and (c) any other non-CO₂ emissions that result from combustion (e.g., CO). The avoided emissions associated with assumptions (a), (b), and (c) of the counterfactual are estimated at 1,065 g CO₂e/MMBtu of LFG. The CO₂ emissions generated from reforming of LFG are treated as 0, assuming they represent CO₂ emissions that would otherwise have been generated via flaring in the counterfactual. RNG is assumed to be transported to SMR or ATR plants via 680 miles of pipeline transportation.²⁷

MSW: BAU Management Practices

1.41%

0.36%

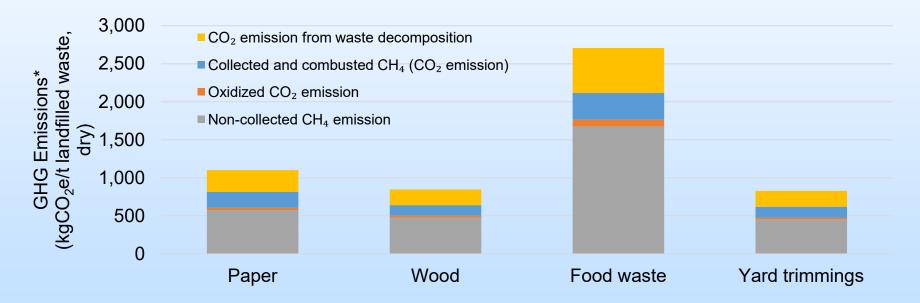
Aluminum Non-ferrous 83%

90%

17%

10%

0%

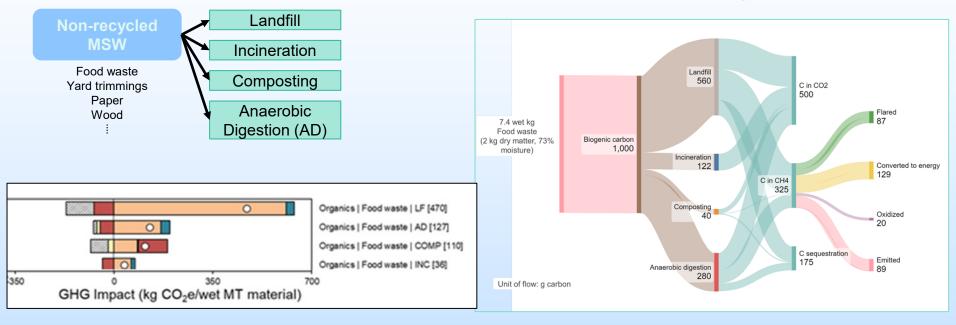

0%

0%

0%

Landfill Specific Parameters Are Developed to Estimate Avoided LFG Emissions for Specific MSW Components

• Due to significant variations in landfill conditions and operations, setting an appropriate BAU which diverts waste from is critically important.

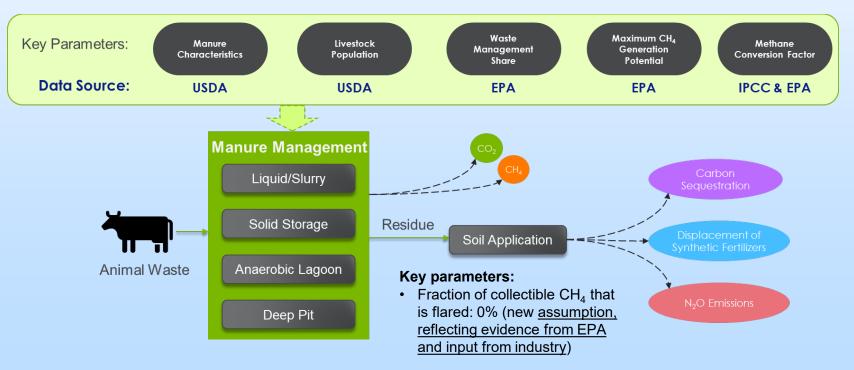


* This figure does not present biogenic carbon uptake, but only shows LFG emissions

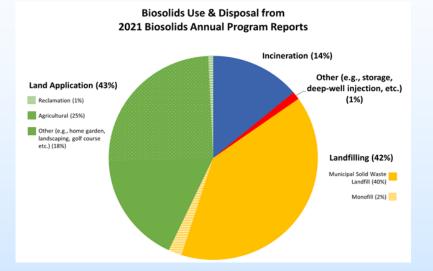
GHG emissions of food waste management

Evaluated the impact of four major BAU MSW management practices at the component level

Carbon balance for average U.S. food waste management



Direct waste decomposition
 Indirect fuel use
 Energy offset
 Fertilizer offset
 C sequestration
 O Net GHG


Operational conditions, regional parameters, and waste feedstock characteristics contribute to variation in GHG emissions from managing food waste via landfilling, anaerobic digestion, composting, or incineration.

Methane Emissions from Animal Manure Management in R&D GREET

- R&D GREET models the emissions from business-as-usual (BAU) management of animal manure
 - Beef, dairy cow, dairy heifer, swine, layer, and broiler and turkey
- R&D GREET utilizes multiple data sources to estimate the emissions from animal waste management
- The BAU emissions are avoided when animal manure is diverted to bioenergy production, thus generating GHG credits for the bioenergy products (e.g., hydrogen)

Wastewater Sludge: BAU Management Practices

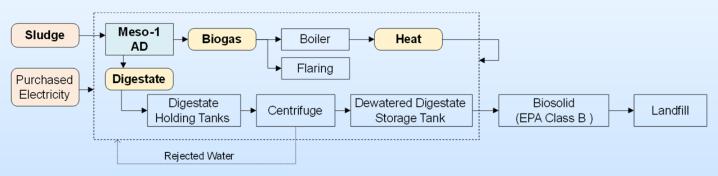
Major practices/end use scenarios:

- Landfill (42%)
- Incineration (14%)
- Land application (43%): for biosolids after Anaerobic digestion (AD)

Wastewater flow and technology share by plant size

(Data from EPA Clean Watersheds Needs Survey)

WWTP Size	Number of	Total Flow	Technology share
(MGD)	plants	(MGD)	Landfill AD Incineration Others
<1	11,264	2,256	100%
1~5	2,612	5,792	89% 11%
5~10	556	3,785	59% 38% 3
10~20	294	4,062	41% 52%
20~50	180	5,262	19% 60% 20%
50~75	29	1,755	14% 83% 3
75~100	33	2,837	9% 81%
100~200	26	3,863	10% 61% 20%
>200	14	4,756	12% 84% 4


0%

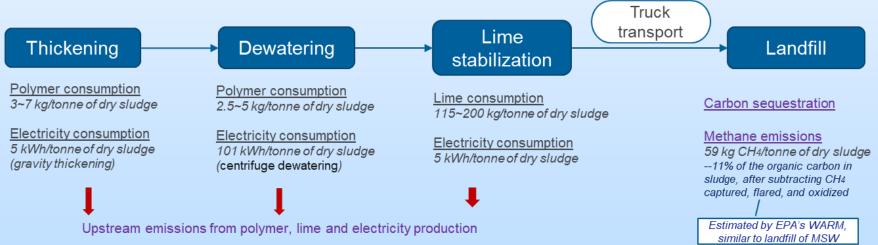
100%

50%

Wastewater Sludge: BAU Management Practices

- Anaerobic digestion (AD)
 - Key assumptions of Single-stage mesophilic AD
 - Biogas yield from AD provides the onsite thermal demand; excess biogas is flared
 - Purchased grid electricity to satisfy electricity demand

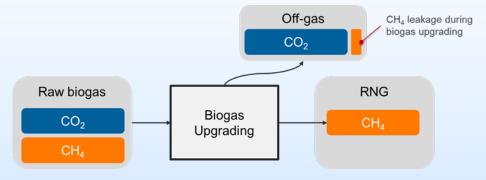
Flow diagram for counterfactual scenario of sewage sludge AD treatment in GREET


GHG emissions of the default BAU scenario: 405 g CO₂e/kg VS (volatile solid in sludge):

- Electricity consumption: 120 g CO₂e/kg VS
- Biogenic methane leakage (1%): 509 g CO₂e/kg VS
- Carbon sequestration: -226 g CO₂e/kg VS

Wastewater Sludge: BAU Management Practices

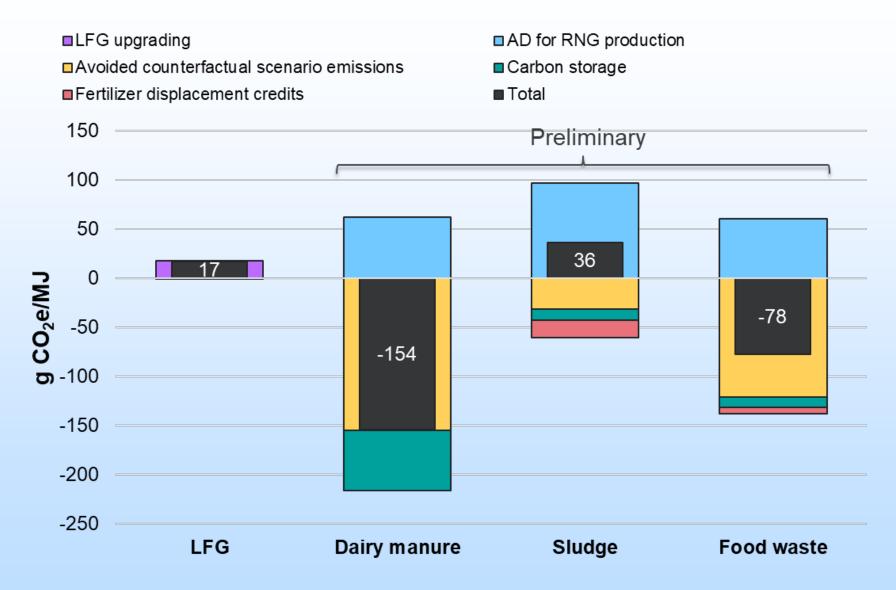
- Landfill
 - Small-scale WWTPs, with flow rates below 1 MGD, typically use landfill for treatment
 - Co-filled with municipal solid waste (MSW): 95%
 - 4% of the landfilled sludge is treated with electricity generation during the process


Typical technique processes for wastewater sludge landfill:

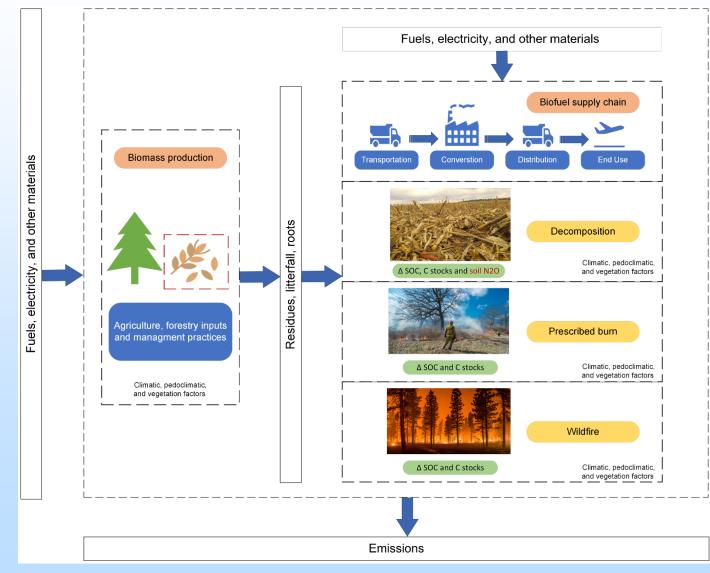
Date sources: EPA CWNS 2012, Cartes et al. 2018, Metcalf & Eddy, 2003, Brown et al. 2010, Yoshida et al., 2017

Methane Leakage from Biogas Upgrading

- Raw biogas produced from AD contains CH₄ and CO₂
- CO₂ is separated in raw biogas upgrading to increase the CH₄ concentration
- In biogas upgrading, a fraction of CH₄ ends up in off-gas, leading to CH₄ loss
- CH₄ loss rate mainly depends on the separation technology:
 - Pressure swing adsorption (PSA)
 - Water scrubber
 - Chemical (amine) scrubber
 - > Membrane



CH₄ loss rates (% of the total production) varies according to the biogas


	25 th percentile	Median	75 th percentile
PSA	0.008	0.13	1.50
Chemical scrubber	0.09	0.14	0.60
Water scrubber	1.29	1.97	2.09
Membrane	0.33	0.36	0.46
Values in the table were from P	akkaladu at al 2022		

Values in the table were from Bakkaloglu et al., 2022

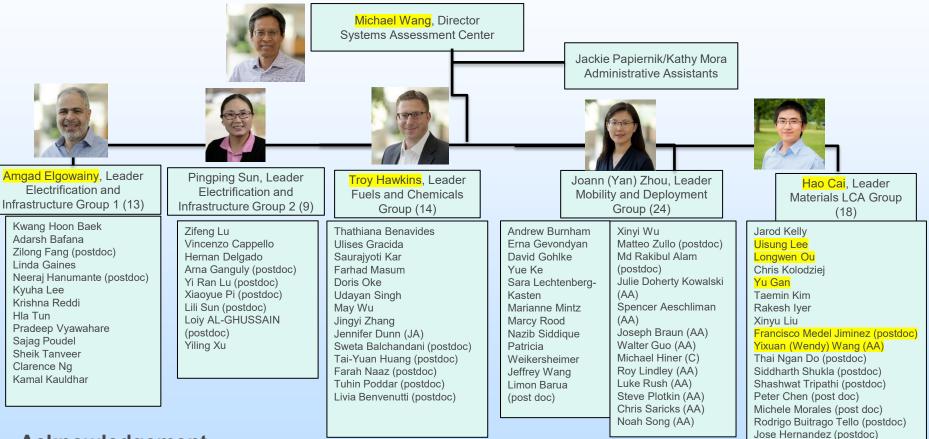
Carbon Intensities of Waste-to-RNG

Next Steps: Counterfactual Scenarios of Crop/Forest Residues

Advance R&D GREET LCA and Applications

Approach/Strateg

- Perform life cycle performance of current and emerging technologies to present their value proposition and inform R&D and business decisions by stakeholders
- Build LCA modeling capacity for DOE, other agencies, and R&D community
- Use a consistent LCA platform with reliable, widely accepted methods/protocols
- Conduct detailed LCA and to document data sources, modeling and analysis approaches, and results/conclusions
- Maintain openness and transparency of LCA by making R&D GREET, its data, and publications publicly available


Outreach and Workforce Development Efforts or Achievements

- Outreach
 - Engaged RNG producers and stakeholders to vet and validate key assumptions;
 - Engaged industry such as wastewater treatment plants and MSW-based electricity producers to vet and validate key assumptions regarding management practices, energy consumption, and emission implications;
- Workforce Development
 - Hired two postdocs;
 - Hired two summer intern students;
 - Hosted one visiting professor from a HBCU (Prairie View A&M University) via DOE's Visiting Faculty Program is from HB
 - Provided RNG stakeholders with a GREET training in an in-person user workshop

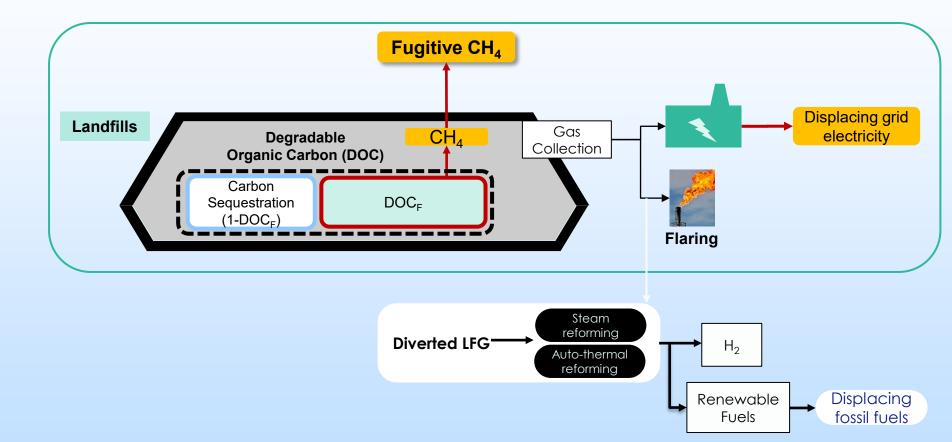
Summary Slide

- Expansion of the R&D GREET model for annual release on 12/21/2023.
 - o Completed *landfill gas (LFG)* counterfactual scenario analysis
 - Completed counterfactual scenario analysis of <u>municipal solid waste (MSW)</u>
 - We developed a comprehensive MSW counterfactual scenario analysis module in the <u>2023</u> <u>R&D GREET model</u> and connected it to downstream RNG and renewable energy production technologies that use specific components of MSW as a feedstock.
 - Addressed several key issues in counterfactual scenario analysis of <u>animal</u> <u>waste/manure</u>
 - Addressed several key issues in counterfactual scenario analysis of <u>wastewater</u> <u>sludge</u>
- Improve analysis fidelity and building consensus of key assumptions and results among key stakeholders
- The outcome of this effort directly supports the development of the tax credit version of the GREET model for 45V Clean Hydrogen Provision under the Inflation Reduction Act (called <u>45VH2-GREET</u>, released to public last December).
- The on-going analysis effort and outcome will continue to advance R&D GREET development and inform broad applications including policy (e.g., 45Z).

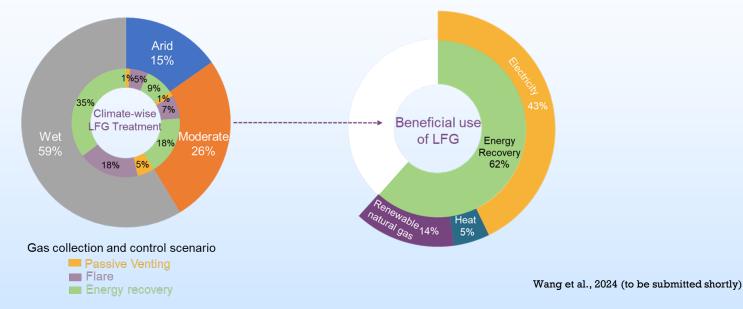
Organization Chart: Argonne's Systems Assessment Center Leads This Effort

Acknowledgement

- FECM and Michael Fonseca;
- HFTO;
- Industry stakeholders;
- Student interns (Kristina Merino of UFL and Matthew Sheely of the University of Alabama).

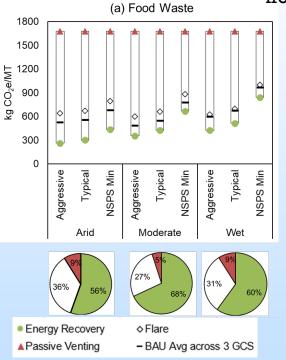

Tom Sykora (C)

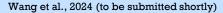
Gantt Chart


Tasks	PLAN START	PLAN DURATION	PERCENT COMPLETE	Two-year project period (8 quarters) 1 2 3 4 5 6 7 8
Task 1. Landfill gas counterfactual			100%	✓
scenario analysis	1	3	100%	
Task 2. Municipal solid waste			100%	🖌 🗸
counterfactual scenario analysis	1	4	200/0	
Task 3. Animal manure counterfactual			70%	→
scenario analysis	3	4	,	
Task 4. Wastewater sludge counterfactual			60%	→
scenario analysis	3	4		
Task 5. Crop residues and forest residues	5	4	15%	*
Task 6. GREET Development and			= 00/	→
Implementation	3	6	59%	

Appendix

Landfills: CH₄ emissions and mitigation approaches

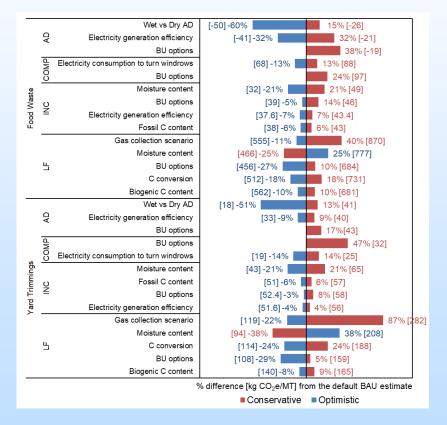

Landfill Gas Collection and Control



- LFG collection efficiency is affected by climate region, gas treatment scenario, and gas collection schedules.
 - Climate: arid, moderate, and wet (affecting waste decay rate and how gas is effectively collected)
 - Gas treatment scenario: no gas collection (or passive venting), flare, and energy recovery
 - · Gas collection schedule: aggressive, typical, and clean air act minimum
- Beneficial use of collected LFG: displacement credits from foregone electricity, heat, and RNG production

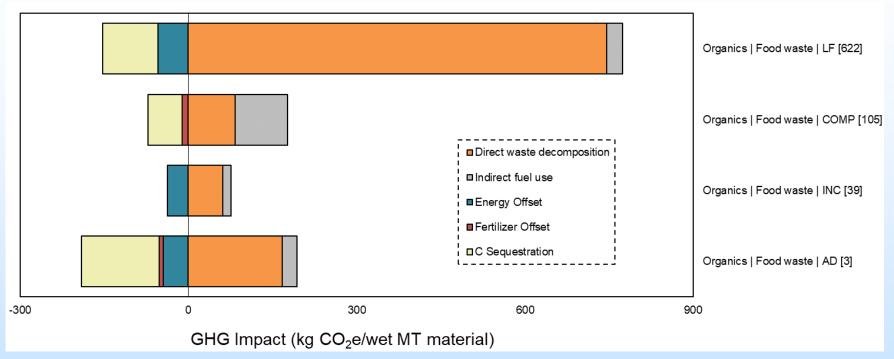
Scenario Analysis for Landfilling Food Waste

Impact of climate, gas treatment scenario, and gas collection schedule on the GHG impact from landfilling food waste



Landfills located in wet regions could be prioritized to improve food waste diversion strategies.

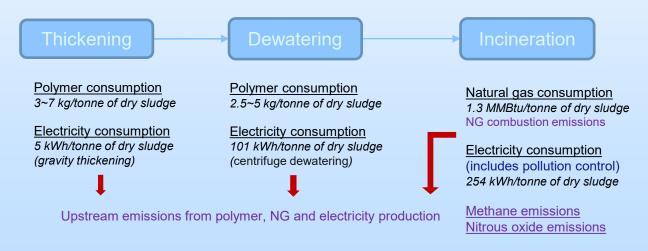
- Waste disposal in a wetter landfill with a gas collection system (GCS) in place leads to the higher GHG emissions than in an arid landfill because majority of the fugitive CH₄ emissions are released before gas collection system is scheduled in place.
- The Aggressive gas collection allows the earlier and longer gas collection to have more LFG captured so can reduce GHG emissions
- Energy recovery scenarios can reduce GHG impacts by 16 - 130% and 50 -110% compared to flare and passive venting scenarios.


Sensitivity Analysis

- What are the most critical factors that drive the GHG impact for each component in each management practice?
- By how much?

Wang et al., 2024 (to be submitted shortly)

GHG Impact of Food Waste Management


Wang et al., 2024 (to be submitted shortly)

- Landfilling has the largest GHG impact due to great landfill CH₄ emissions from waste biodegradation
- The GHG impact from high biodegradability is greater than the credits from carbon sequestration and energy offset

BAU Wastewater Sludge Management Practices

- Incineration
 - Compared to landfill, incineration is generally applied in larger sewage plants.
 - Two types of incineration technologies: Multiple-hearth incineration (63%); Fluidized bed incineration (37%)
 - Less than 2% of the incinerated sludge is treated with electricity generation during the process

Typical technique processes for wastewater sludge Incineration:

Date sources: EPA CWNS 2012, Cartes et al. 2018, Metcalf & Eddy, 2003, Brown et al. 2010, Yoshida et al., 2017