Extending TOUGH+HYDRATE with a Parallel Particle Transport Simulator: Numerical Investigation of Sand Production Issues During Production from Hydrate Deposits FWP-1022410

T. Huang¹, G.J. Moridis^{1,2}, T.A. Blasingame¹
1: Texas A&M University, Department of Petroleum Engineering
2: Energy Geosciences Division, Lawrence Berkeley National Lab

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 2-4, 2024

Presentation Outline

- Task Motivations and Objectives
- Parallel Tough + Hydrate + Particle Transport (THPT)
 Simulator
- Representative Accomplishments
- Task Challenges

Task Motivation

□ Abrupt termination of hydrate production trials

- Clogging of pore throats
- Blockage of the well head
- Equipment failures

Sand production, North Slope of Alaska (Schoderbek et al., 2013) Sand production, Nankai Trough (Yamamoto et al., 2017)

3

Task Motivation

□ Few simulations based on Lagrangian Method

Eulerian vs Lagrangian

- Continuum approach
- Geomechanics/Concentration
 - Low computational cost •
- Uchida et al (2016), Yan et al Kazidenov et al (2023) (2018), Loret et al (2019), Akaki et al (2020), Li et al (2024), ...

- Geomechanics+Particle tracking •
- High computational cost

Task Objectives

- To develop a <u>parallel Tough + Hydrate +Particle</u>
 <u>Transport (THPT) code</u> capable of standalone application
 or seamless integration with TOUGH+HYDRATE
- To leverage the <u>Lagrangian Discrete Element Method</u> (<u>DEM</u>) to simulate the discrete characteristics inherent in sand production issues

THPT: Simulation Approach - DEM

DEM Governing Equations

THPT: Underlying Physical Models

Forces	Symbol	Equations
Elastic force	f_{ij}^{cn}	$-\frac{4}{3}E^*\sqrt{R^*}\delta_n^{\frac{3}{2}}n$
Damping force	f_{ij}^{dn}	$-c_n \Big(8m_{ij}E^*\sqrt{R^*\delta_n}\Big)^{\frac{1}{2}}v_{\mathrm{n},ij}$
Van der Waals force	f_{ij}^{wdl}	$f_{vdw} = \frac{A_H}{24d} \left(\frac{1}{x^2}\right) \vec{n}_{ij}$
Electrical double layer force	f_{ij}^{edl}	$4\pi\epsilon(z\psi)^2\operatorname{Rexp}(-\kappa d)$
Drag force(*)	$f_{\mathrm{f},i}$	$C_d \varepsilon_f \frac{\pi (D_p)^2}{4} \frac{\rho_f (u-v)^2}{2} \varepsilon_f^{-\chi}$
Gravity	$f_{\mathrm{g},i}$	$m_i \mathrm{g} \left(1 - rac{ ho_f}{ ho_p} ight)$
$(*)\chi = 3.7 - 0.65 \exp(-1)^{-1}$	$\left[-\frac{(1.5-log)}{2}\right]$	$\left[\frac{g(Re)}{2}\right], \ C_d = \left(0.63 + \frac{4.8}{Re_p^{0.5}}\right)^2$

THPT: Architecture

THPT: Coupling Scheme

Assuming that the presence of particles does not change the fluid properties

THPT: Particles Detachment

Rock skeleton: Cementation of sand grains and hydrate

10

THPT: Improve Computing Efficiency

THPT: Parallel Performance

Balanced workload on each node

Representative Accomplishments

Skeleton grain number: **273** Maximum grain size: **4 mm** Minimum grain size: **0.6 mm** Simulation domain size: $10 \text{ m} \times 10 \text{ m}$ Element size: $0.05 \text{ m} \times 0.05 \text{ m}$ Element number: 4000013

Modeling Settings

Parameter	Value	Parameter			Value	
Rock density	2600 Kg/m ³	Rock young modulus		1.0 MPa*		
Initial porosity	0.3	Poisson ratio		0.3		
Intrinsic Perm	2.96×10 ⁻¹³	Damping coefficient		0.3		
Hydrate density	920 kg/m ³	Sand particle radius			2.0×10⁻⁴ m	
Initial pressure	13 MPa	W (criterion exponent)			3.0	
Initial temperature	288 K	Max timestep			2.0×10 ⁻³ sec	
Initial hydrate saturation	0.5	Coupling interval			3.0 sec	
Initial water saturation	0.5					
Irreducible water	0.40	Case	Production	Critical		Bottomhole
saturation	0.12		hydrau		lic	
Entry capillary pressure	0.125 MPa	ume		gradient		pressure
	$k_{rA} =$	A1	3600 s 1.5E-5		m/s	10 MPa
		A2	3600 s	1.5E-5	m/s	11 MPa
Relative permeability	$\max\left\{0, \min\left\{\left[\frac{S_A - S_{irA}}{1 - S_{irA}}\right]^n, 1\right\}\right\}$					
model	$k_{rG} =$					
	$\max\left\{0, \min\left\{\left[\frac{S_G - S_{irG}}{1 - S_{irA}}\right]^n, 1\right\}\right\}$					14

Γ 1 1-λ

Capillary pressure

Reference Case A1: Animation

Reference Case A1: Animation

Reference Case A1: Animation

Unobstructed paths for particle transport

Particles clogging around the well

Reference Case A1: Detail View

Reference Case A1: Time Series Plots

Reference Case A1: P&k Evolutions

P-distribution: Production at a constant bottom-hole pressure

k-distribution: decreases due to particle clogging

Effect of Bottomhole Pressure on Sand Production

Decreasing bottom-hole pressure:

- corresponds to increasing sand production
- enhances particle clogging around the well

Effect of Bottomhole Pressure on Production Rates

- Fluid production rates decrease with increasing sand accumulation in the well vicinity
- Variations in accumulated sand impact production rates

Computational Cost

Factors affecting calculation cost

- **Timestep:** limited by the maximum fluid velocity
- Number of particles: limited by the average fluid velocity and particle detachment criterion
- Elapsed time of each iteration: limited by the number of particles
- Number of processors

Case	Num Proc	Time (s)	V _{cri} (m/s)	P _{bh} (Mpa)	Num Particles	Simulation Time (hour)
A1	96	3600	1.5×10 ⁻⁵	11	331,354	27.1
A2	112	3600	1.5×10 ⁻⁵	10	552,256	54.2

Computational Cost

Main subroutines

A2: Overall Time Statistics

- P-P contact: Particle-Particle contact searches
- P-W contact: Particle-Porous media wall contact searches
- Matrix Solving: Calculations of forces; integration of Euler's equation
- Communication: Sharing information across processors

Time Statistics of PT Calculations

Challenges

- Need for better mathematical expressions describing the particle detachment criterion (hydraulic gradient, strain, hydrate saturation, etc.)
- Wide variability of timestep adjustments (several affecting factors)
- Realistic grain structure of porous media
- Need for code validation against experimental results (?)
- Code enhancement to optimize computational efficiency
- Extension to 3D