Deepwater Methane Hydrate Characterization and Scientific Assessment

DE-FE0023919

P. Flemings and the GOM2 Team

The University of Texas at Austin

Oregon State University The Ohio State University University of New Hampshire

University of Washington Tufts University USGS Lamont-Doherty Earth Observatory BOEM

Colorado School of Mines

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 2-4, 2024

Presentation Outline

- Project Overview
- Technical Approach
 - Scientific Goals
 - Site location
 - Drilling and Coring Program
 - Results
 - Reporting Plan
- Summary

GOM2 Scientific Goals, Dates, Funding

- To locate, drill, and sample methane hydrate deposits
- To store, manipulate, and analyze pressurized hydrates samples
- To maximize science through sample distribution, analysis, and collaboration

GOM2 Scientific Goals, Dates, Funding

- To locate, drill, and sample methane hydrate deposits
- To store, manipulate, and analyze pressurized hydrates samples
- To maximize science through sample distribution, analysis, and collaboration

Project Participants

Pressure Core Analysis

Seismic Gas Analysis

Geomechanics

Pressure Core Analysis; Geomechanics University of New Hampshire

Sedimentology

Microbiology

In situ Measurements

Regional Mapping, Permitting Support

Pore Water Geochemistry

NATIONAL ENERGY TECHNOLOGY LABORATORY

Core Analysis

Accomplishments to Date

- Successful Field Execution: GOM2-1 and GOM2-2
- Improvements of pressure coring and core analysis equipment
- Fundamental contributions in characterization, laboratory analysis, and modeling
- Two Dedicated AAPG Volumes
 summarize GC 955 findings
- International research collaboration on pressure core analysis
- Executing Shore Based Core Analysis Program for GOM2-2

UT-GOM2-2 Science Objective 1: . Understand Reservoir System

Steps:

- Obtain pressure core
- Characterize:

hydrate concentration, gas composition, age, sediment texture, pore water chemistry

Material behavior

permeability, compression, capillary behavior, strength

 Elucidate reservoir production behavior to inform reservoir simulation

UT-GOM2-2 Science Objective 2: . Understand Basin System

Understanding the Basin System

Malinverno & Goldberg, 2015

Acquire Depth Profile:

- **Collect** cores, gas/pore waters, temperature with depth
- Characterize dissolved methane/hydrate concentration, gas molecular composition (microbial source), pore water geochemistry and sedimentology, variation in organic carbon with depth, age of sediments.

Interpret:

- how microbial factory works (shallow vs deep methane generation)
- How are the products transported to the deposit
- Elucidate system behavior of entire carbon cycle

GOM2-2 Expedition: Terrebonne Basin, Gulf of Mexico

Terrebonne Basin, northern Gulf of Mexico

Location:

Terrebonne Basin

The Terrebonne Basin, northern Gulf of Mexico

Vessel and 'Dockside' Drilling Program

Offshore

Sites: WR313 H002 and H003 Dates: July 30-Sept 1, 2023 Vessel: Helix *Q-4000* Duration: 34 days off-shore

Vessel and 'Dockside' Drilling Program

'Dockside' - College Station, TX and Salt Lake City, UT

O'O'

Drilling and Coring Operations: The Plan

Drilling and Coring Operations: Reality

15

The Culprit

Preliminary Results

H003 Coring

Shallow Coring Program

- Continuous coring from the seafloor to 508 fbsf (155.1 mbsf) including:
 - APC cores with full penetration and high recovery
 - Pressure cores that characterized the dissolved methane profile
- 12 APCT temperature measurements captured the insitu temperature

Lithostratigraphy (0-300 mbsf)

Most of the clay dominated intervals vary in composition between two end members:

- "carbonate oozes": calcareous nannofossil oozes +/foraminifera
- "lithogenic clays": quartz-rich, carbonate lithic-rich clays, with feldspars (microcline and plagioclase) and igneous lithics

Biostratigraphy

- Pleistocene Age Strata
- Rapidly formed basin (1mm/yr)
- Sedimentation rate rapidly increases at the Blue to Orange interval
- Ages roughly compatible with previous predictions

20

The Biogenic Factory?

In-situ Temperature

- Higher temp. gradient than predicted by 1-D model
- Contribution of salt structure to heat flow

Deep Coring Program

- Recovered Pressure Core across two hydrate-bearing reservoirs
 - Relatively low recovery in sand bearing intervals.

Orange Sand Lithology

Pressure Cores of Hydrate Bearing Sand

H002 Coring

H002-08CS

Preliminary Results

Hydrate Saturation – Transition into the hydrate-saturated Upper Blue sand

Shore-based analysis program Work on Science Objectives continues in BP6...

Plan for Reporting

- The UT-GOM2-2 Scientists, UT-GOM2-2 Hydrate Coring Expedition Preliminary Report – *April 30, 2024*
- The UT-GOM2-2 Scientists, Proceedings of the UT-GOM2-2 Hydrate Coring Expedition – Dec 31, 2024
- Special Journal Volume on Walker Ridge 313
 - number of papers in special volume to-bedetermined (G3?)
- Expedition Website

UT-GOM2-2: Gulf of Mexico Deepwater Hydrate Coring Expedition

Expedition UT-GOM2-2 General Information

Location: Terrebonne Basin, northern Gulf of Mexico Sites: WR313 H002 and WR313 H003 Dates: January – May, 2023 Chief Scientist: Peter Flemings Sponsor: U.S. Department of Energy

Expedition Summary & Scientific Objectives

The University of Texas at Austin (UT), Genesis of Methane Hydrate in Coarse-Grained Systems: Northern Gulf of Mexico Slope Project (GOM²), will perform the UT-GOM2-2 drilling and coring expedition in the Terrebonne Basin, Gulf of Mexico outer continental shelf.

https://ig.utexas.edu/energy/gom2-methane-hydrates-at-the-university-of-texas/gom2-2-expedition/ 28

UT-GOM2-2: A Success Despite Challenges

Recognized challenges before execution

- 1) Permitting (13)
- 2) Contracting, Insurance, Bonding, UT Approval
- 3) Drill hole ~3,000 feet below mudline in 6460' water
 - ~14,000 bbl. mud
 - 10,000 ft of pipe
 - Plug and Abandon
- 4) Conventional and pressure core, temperature measurements.
- 5) Mobilize/perform science program at sea and dock
 - 1) 10 portable laboratories
 - 2) 32 scientists, 6 subcontracts, 3 service agreements
 - 3) Helix Q-4000 and 15 partner organizations
- 6) Continuous re-assessment of budget and science tradeoffs, before and during expedition.

Challenges during execution

- Unexpected shallow sand
- Vessel (top drive) down for 1 week
- Vessel not optimized for drilling/coring
 - Equipment
 - personnel
- Vessel just out of port call.
- Covid
- Continous delays on execution

Summary Slide

- Successfully executed a deepwater hydrate coring expedition
 - ✓ Challenging drilling conditions exacerbated by seafloor sand section
 - $\checkmark\,$ Extraordinary data set to study basin scale microbial gas $\,$ system $\,$
 - ✓ Suite of pressure cores from shallow will illuminate the hydrate reservoir petrophysics.
 - \checkmark Exciting science now being done on expedition results
- Integrated effort led by DOE but linking USGS, BOEM, 7 universities, and contractors
- These efforts take long term focused commitment and investment

Thank you! (appendix slides follow)

Students Supported During the Project

- 1. Zachary Murphy UT Austin Graduate Student
- 2. Camila Van Der Maal UT Austin Undergraduate Student
- 3. Addison Savage UT Austin Undergraduate Student
- 4. Colton Hayden UT Austin Undergraduate Student
- 5. Nicholas Adelberg UT Austin Undergraduate Student
- 6. Nicholas Mills UT Austin Post-Doc
- 7. Rachel Coyte Ohio State Post-Doc
- 8. Saffron Martin Ohio State Undergraduate Student
- 9. Muhedeen Lawal Ohio State Post-Doc
- 10. Irita Aylward U. Washington Graduate Student

- 11. Taylor Walton U. Washington Graduate Student
- 12. Reese Miller U. Washington Graduate Student
- 13. Man-Ying Tsang U. Washington Post-Doc
- 14. Kelly Shannon Oregon State Graduate Student
- 15. Jessica Buser Young, Oregon State Graduate Student
- 16. Camille Sullivan UNH Graduate Student
- 17. Kayla Tozier UNH Graduate Student
- 18. Li Wei Columbia University (LDEO) Post-Doc
- 19. Cathal Small Tufts University Graduate Student
- 20. Ethan Petrou Oxford Post-Doc

2023 Publications

- Bhandari, A.R., Cardona, A., Flemings, P.B., Germaine, J. T. (In Review). Geomechanical behavior of sandy silt from Green Canyon 955 hydrate reservoir - Deepwater Gulf of Mexico for gas hydrate dissociation, Marine and Petroleum Geology
- Cardona A., Bhandari A., Heidari M. and Flemings P.B. (2023). The viscoplastic behavior of natural hydrate bearing sediments under uniaxial strain compression (K0 loading), Journal of Geophysical Research: Solid Earth, v. 128, e2023JB026976, <u>https://doi.org/10.1029/2023JB026976</u>
- Naim, F., Cook, A.E., Moortgat, J. (2023) Estimating P-wave Velocity and Bulk Density in Near-seafloor Sediments Using Machine Learning, Energies. 16(23) doi:10.3390/en16237709. <u>https://www.mdpi.com/1996-1073/16/23/7709</u>
- Portnov, A., You, K., Flemings, P.B., Cook, A.E., Heidari, M., Sawyer, D.E. and Bünz, S. (2023) Dating submarine landslides using the transient response of gas hydrate stability. Geology. doi: 10.1130/G50930.
- Portnov, A., Flemings, P. B., You, K., Meazell, K., Hudec, M. R., and Dunlap, D. B., 2023, Low temperature and high pressure dramatically thicken the gas hydrate stability zone in rapidly formed sedimentary basins: Marine and Petroleum Geology, v. 158, p. 106550.
- Varona, G. M., Flemings, P.B., Portnov, A., 2023, Hydrate-bearing sands record the transition from ponded deposition to bypass in the deep-water Gulf of Mexico, Marine and Petroleum Geology, v. 151. <u>https://doi.org/10.1016/j.marpetgeo.2023.106172</u>

2023 Conference Presentations/Abstracts

- Buser J.Z., Shannon K. and Colwell F. The Microbiome of Methane Hydrate-Bearing Sediments, a Global Meta-Analysis. OS21B-1425. Poster presented at the Fall Meeting of the American Geophysical Union. December 2023.
- Cardona, A., Fang, Y., You, K., and Flemings, P.B. Relative Permeability of Hydrate-Bearing Sediments: The Critical Role of Hydrate Dissolution. OS21B-1418. Poster presented at the Fall Meeting of the American Geophysical Union. December 2023.
- Collett, T., Boswell, R., Shukla, K., Flemings, P.B., and Tamaki, M. Characterization of deepwater marine depositional systems associated with highly concentrated gas hydrate accumulations in coarse-grained reservoirs. Abstract ID 61. Oral talk presented at International Gas Hydrates Conference (ICGH10). July 2023.
- DiCarlo, D., Murphy, Z., You, K. and Flemings, P.B. Pore Occupancy of Gas Hydrate. OS23A-06. Oral talk presented at the Fall Meeting of the American Geophysical Union. December 2023.
- Kumar, A., Cook, A., Portnov, A., Palmes, S., Frye, M. and Lawal, M. Bottom Simulating Reflections and Pockmark Distribution in the Northern Gulf of Mexico. OS21B-1412. Poster presented at the Fall Meeting of the American Geophysical Union. December 2023.
- Naim, F., and Cook, A. Occurrence of gas hydrate in carbonate mud in Offshore Western Australia. OS23A-02. Oral talk presented at the Fall Meeting of the American Geophysical Union. December 2023.
- Phillips S., and Johnson, J. Tectono-sedimentary controls on early diagenetic methane cycling in the Cascadia accretionary wedge. OS21B-1424. Poster presented at the Fall Meeting of the American Geophysical Union. December 2023.
- Portnov, A., Flemings, P.B., and Meazell, K. Anomalously Deep Gas Hydrate Stability Zone In Rapidly Formed Sedimentary Basins. Poster presented at the Offshore Technology Conference (OTC). May 2023.
- You, K., Thomas, C., Savage, A., Murphy, Z., O'Connell, J., Flemings, P.B. Dissolved methane diffusion drives hydrate-bearing pressure core degradation during long-term storage in water. Poster presented at International Gas Hydrates Conference (ICGH10). July 2023.
- You, K., Portnov, A., Flemings, P.B. Methane dynamics associated with the thawing subsea permafrost since the Last Glacial maximum. Abstract ID 250. Oral talk presented at International Gas Hydrates Conference (ICGH10). July 2023.
- You, K., Flemings, P.B. and DiCarlo, D. Thermal and Hydraulic Controls on Gas Production from Methane Hydrate Reservoirs. OS21B-1421. Poster presented at the Fall Meeting of the American Geophysical Union. December 2023.