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Project Overview

Funding - DOE: 7.8 million dollars; Industry share: 12.1 million dollars.
Date: October 1, 2019 to September 31, 2023 with 1-year no-cost extension.
Objective: Evaluate relatively unknown and unstudied reservoir in southern
Oklahoma called the Caney Shale as a potential emerging unconventional oil and gas
play.
* Characterize geologically including depositional facies, reservoirs and seals
* Hstablish tectonic control of Caney Shale deposition
* Complete comprehensive geomechanical and geochemical characterization
* C(alibrate core to petrophysical properties including wireline-log signatures and
establish reservoir and seal distribution
* Establish mechanical properties and rock-fluid interactions
* Investigate rheology as pressure and fluid composition change
* Generate field development strategy based on integrated results of
characterization and drilling and production data from project well
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Progress -Task 11: Petrophysical Analysis
Caney Shale: Similar but more subtle log responses in
reservoir and ductile beds as Fayetteville and Barnett shales
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Progress - Task 11: Petrophysical Analysis

X-ray fluorescence (XRF)-derived concentration of Al increases with clay
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Elevation (m)

Progress - Task 11: Detailed Rock Analysis

Insight into Architecture and Origin of the Ardmore Basin,
Caney Shale Exploration Fairways
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Progress - Task 11: Detailed Rock Analysis
Caney Shale Reservoirs Developed in Compressive Oblique-Slip Tectonic System,

Faults Broke Forward during and after Caney Deposition
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Progress - Task 12: Rock-Fluid Interactions
Geochemical Characterization: Mineralogical Changes
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v' Pyrite, carbonates, and feldspar breakdown is v
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Progress - Task 12: Rock-Fluid Interactions
Geochemical Characterization: Rock Properties
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Progress - Task 12: Rock-Fluid Interaction

Evaluation of Dynamic and Static Mechanical Properties for Caney
Shale: Effective Stress Impact on Dynamic Mechanical Properties

* A good match between the dynamic

mechanical properties from the

sonics logs (field) and the acoustic P

and S wave velocities measurements

(lab) for 10 Caney samples under :

o Axial stress (o4) = 7000 psi

o Confining stress (03) = 3000 psi

o Temperature = 240 °F

o Saturation impact was considered
from the measurements of saturated
Gray Berea sandstone samples

Additional measurements were
conducted at o, of 5000 and 9000
psi.

Increase in o, yielded an increase in
Young’s modulus (E), while there
was no clear impact on Poisson’s
Ratio (V).
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Progress - Task 12: Rock-Fluid Interaction

Evaluation of Dynamic and Static Mechanical Properties for
Caney Shale: Static Mechanical Properties Derivation

to static

correction
factor (F,) was estimated for the
5 depths with known Static
Young’s modulus (Benge et al.,

* F, is higher for zones with high
neutron porosity (PHIN) and low
bulk density (RHOB).

* The XGBoost SHAP evaluation
showed that the constant F,
strongest

profile

has

the
correlation with TVD and PHIN.
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Progress - Task 12: Rock-Fluid Interaction
Geomechanical Characterization: Strength and Elastic

Properties
Completed laboratory characterization of & 0
static mechanical properties f W
» Zones identified as nominally “ductile” a5
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Progress - Task 12: Rock-Fluid Interaction
Geomechanical Characterization: Creep Properties

* Creep testing conductedon |, ... b 2

samples drilled at multiple
orientations
 Vertical (perpendicular to
bedding)
* Horizontal (parallel to
bedding)
e 45°

* Nominally “ductile” zones
significantly more prone to creep
than nominally “brittle” zones.

* Bedding planes allow for more
creep and more deformation
* Vertical samples have more
creep, lower Young’s modulus
* 45° between behavior of
vertical and horizontal samples
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Task 12c: Rock-Fluid Interactions in Produced Water-Crude Systems
Wettability of Illite-coated Microfluidic Surfaces

Crmde 0i] Proosdisced VWatcr

Crude €8I Progluces YWater

" e b — o 5
4%

it S el Y L B e i R
Fines Migration Fines Migration

R A

Produced Water
(a) Wet Before Aging  (b)

Cruwde Oil Produced YWater

I mm 1| mrm

Crode (il Produced Waler

R Fines Migration
Produced Water
(c) Wet After Aging (d)

Fines digratisn

Illite-coated microfluidic channel contacted by produced water first:
(a) produced water receding contact angle and (b) advancing contact
angle in produced water-crude oil system before aging; (c) produced

water receding contact angle and (d) advancing contact angle after aging.

., FProduced Water O rude 0l | Produced Water Crade Oil
mm

Crude Oil
Wet Before Agin
(a) AL (b)

Froduced Water © rudde O3l

T Produced Water O rucde Ol

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| Crude Oil

I (c) Wet After Aging (d)

I - _

|  Illite-coated microfluidic channel contacted by crude oil first: (a)

: produced water advancing contact angle and (b) receding contact angle
|  in produced water-crude oil system before aging; (c) produced water

|

advancing contact angle and (d) receding contact angle after aging.

Wiz it biliny
) ) Fhuiiad ‘_"“““':'_mf‘u Aubvancing Receding
Ex peerime mit tha nl.-.'ﬂI“IIH]I'.' Contact Angle | %) Canmiact Ample | °)
chip first B fare After Befome Aiter
A Aging Agmg Agmg
¥l Waler n=[ecan: (il ‘Wil Ol Wt Ol Wt Ol Wit
=10 e 3] Water Waler 'Wiel Ol Wt Waler Wit Ol Wiet
2k ppan hrine n-Decane il Wt Water Wet il Wt Water Wet
fi- 10 e e 5k ppm brme Water Wet | Water Wet | Water Wet | Water Wit
10k pyam hrime n-[lecan: (il Wel Ol Wet Ol Wet Ol Wit
n-Decane M prpas bermss Wiaber Wel | Water Wetl | Water Wet | 'Waler Wet
3k barin n-Decan: Ol Wl Ol Wet Ol Wt Chll Wt
n-Decane ik ppem brie Ol Wel OdWet | OaWet | OdWet 14
Produced walen Crde od il ‘Wl Ol Wt Ol Wet Chll Wit
[T ! Priwdusced water Water Wel | Water Wet | Water Wet | Water Wit




Task 12c: Rock-Fluid Interactions in Produced Water-Crude Systems
Wettability of Illite-Smectite-coated Microfluidic Surfaces
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Progress - Task 13 Coupled Processes Modeling
Proppant Embedment and Creep

Katende et al., (2023)

32N

Completed modeling of propped fracture

ConductiVity eXperiment (multilayer) 20N simulations that maj(ches
Jﬂ / embedment profile \

h 4
250 um Measured surface

- Sand compaction and grain crushing oo embedment profe
cause irreversible conductivity
reduction .
[ — Benge et al., (2023)

Completed modeling of OSU flow
through of monolayer propped fractures

0.15 mm ;
—

14N14N

o
-
I

o

o

a
I

- Proppant embedment has significant
impact on fracture conductivity - | .

FRACTURE APERTURE (mm)

2
TIME (years)

Completed proppant creep embedment

modeling using UPITT creep properties Ecreep = koyt"
10 MPa 3 years 1M years
o Propped fractures in ductile units ljrlo g
could close completely over time - é
Ongoing modeling anisotropic creep ) Horizontal stress relaxation
caprock stress relaxation ] IR U - =

TIME (years)



Progress - Task 13 Coupled Processes Modeling
Multiphase Fluid Flow and Chemistry

Completed production modeling for
two-phase flow (gaseous CH, and
aqueous-phase brine)

Completed modeling at core scale, for
flow-through experiments considering
variability in wettability, including
mixed-wet versus water-wet.

Completed geochemistry modeling of
batch reactor experiments considering
deionized water, fracking fluid, and
production fluid.

Main minerals forming are chlorite

(Mg,Fe);(S1,A1),0,o(0OH), (Mg,Fe);(OH),

and ferrihydrite (Fe,-0.5H,0)

Ongoing field production modeling

considering the mix-wet system and time

dependent fracture closure

Example of production modeling results of pressure

Prisaoie P}

Example of geochemistry model and lab results
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Progress — Task 13 Coupled Processes Modeling:
New CO,/H, Caprock Studies

Investigating creep closure of induced
fractures in Caney shale by roughness
imaging and numerical modeling.

o Use of tensile cracked Caney
samples from UPITT

Fracture geometry (lower block)

Long-term Creep compaction and
fracture sealing

o Surface roughness imaging (S.
Nakagawa, LBNL)

o Un-propped fracture closure

Red areas represent contacts and

modellng (J. RuthISt, LBNL) blue areas are open to flow
Caney Shale as analogue caprock fOI’ Conceptual Model of Storage System Caney Shale as an Analogues Caprock
subsurface CO, and H, storage b 4+ SR R
j an

o Modeling new OSU CO, flow Y » i
through experiments (C. Doughty) CO, or H, leakage?

Fracture

i 75 R ;) —_—
o Modeling potential leakage of CO, Basrier | Ducte2 g
or H, through stacked Caney shale  geservoir = = <92 _

(Y. Zhang, LBNL) B ' ]




Progress - Task 14: Drilling, Stimulation and Production

Economical and Technical analysis

14.1 Post analysis of drilling and completion of the horizontal well

Drilling and Rock Mechanics

* Drilling offset data was used to pre-simulate the project drilled well with the
Pason Optimizer yielding a great match within 2% total drilling time to total
depth.

Production

* From the project cored and logged well, correlations were developed for
geomechanical and petrophysical to rock strength obtained from drilling data
for reservoir A and B.

* Production from the project competed well matched pre-predicted production
using GOHFER with the geomechanical and petrophysical properties along the

lateral. Typical Lateral Well in SW Oklahoma - GOHFER vs Field Data
900
[

800
700 Field Data

GOHFER

100 l 9

0 200 400 600 800 1000 1200
Production Day



Progress - Task 14: Drilling, Stimulation and Production

Economical and Technical analysis

14.2 Design drilling and completion for individual areas

Drilling

* Future Caney wells were further optimized resulting in a further CAPEX
deduction of more than 10%

Production

* Both reservoir A and B in the Caney are deemed economical

* Studied parent child relations on reservoir and well spacing in GOHFER

* This pressure depletion impacted production, but the wells still generate high
production values and maintain an 880’ spacing is adequate

Section 1 Section 2 Section 3 Section 4 Section 1 Section 2 Section 3 Section 4
Resv 1 ‘ Resv 1 ‘
‘ Ductile 1 ‘ ‘ Ductile 1 ‘
Resy 2 ‘ o o 2 o [ ] ([ J
= ~800/ 1375’ ‘ | 1085’ | 250 |[Duce 2 710
— /L‘
® o 0—0 ©-0 0 0 @ .\. e o Y0000 . ° ° o A, ® ©

Well Spacing Scenarios for a Single Pay Reservoir Well Spacing Scenarios for a Stacked Pay Reservoir
20




Progress - Task 14: Drilling, Stimulation and Production
Economical and Technical analysis

14.3 Economical analysis

* The Caney Shale is an economic resource even with stressed commodity
prices

* Single well analysis using older completion technology and non-optimized
drilling indicate a WTI crude sensitivity break even of $42.5

* Applying optimized drilling effect on CAPEX and increased production due to
newer technologies in stimulation decreases this substantially for a single well

Typical SW Oklahoma Caney Reservoir Typical SW Oklahoma Caney Reservoir

$25,000,000 —— Cumulative Cash Flow Cumulative Discounted Cash Flow $12,000,000

$20,000,000 — $11,000,000

$15,000,000 $16,000,000 A
$10,000,000 - ‘ WA S
Ve _ — - 59,000,000 —r s
$5,000,000 & ——_ OitPrice
/ 58,000,000 >
5' = GGas Price
$(5,000,000) $7,000,000 s : NGL Price

|\

$(10,000,000) $6,000,000
5{15'000’000:' 45,000,000
0 5 10 15 Years 20 25 30 35 25% -20% -15%  -10% 5% 0% 5% 10% 15% 20%  25%
Cash Flow Analysis of Single Well Single Well Net Present Value (NPV) 21

Sensitivity to Commodity Pricing




Progress - Task 14: Drilling, Stimulation and Production
Economical and Technical analysis

* The effect of parent child effects give 3 tier type wells. The production
decrease can be accounted for in field development via tiered production.

* All 3 tier well production classifies certain areas predicated on their realized or
anticipated production to risk adjusted economic models

* The proposed field development plan suggested includes 110 lateral wells total
in Reservoir A and B

Reservoir A& B Presen t: ORANGE
Reservoir B Only: YELLOW

Reservoir
A& B
Presen t: ORANG

S
\\\\\\\\\\\\\\\ Reservoi 5 Wells 70 BLUE
NN\

BN

EANNS

Proposed development drilling locations for the 110 lateral wells overlayed on the geological structure
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Project Summary

Objective: Evaluate relatively unknown and unstudied reservoir in southern Oklahoma called
the Caney Shale as a potential emerging unconventional oil and gas play.
The foundation for the project was a 650+ feet long continuous core of the complete Caney
section. First and only core of the complete Caney interval.
* Geological Characterization essentially complete
* Data were leveraged to investigate tectonic evolution of the area and understand how
tectonism influenced Caney deposition and reservoir and seal evolution.
* Core allowed a comprehensive geochemical and geomechanical characterization including
LBNL models of long-term rheology as pressure and fluid composition change.
Core-calibrated wireline log signatures were used to map distribution of reservoir and seal
intervals.
Detailed rock analysis including characterization on nanopores continues.
Project well was successfully drilled and completed; results closely match modeled production
Integrated core, logs and drilling data supported detailed modeling of completion strategies and
overall field development.
* Economic feasibility with sensitivity to commodity prices, CAPEX and OPEX completed.
* Results corroborate industry partner predictions that Caney Shale is economic
unconventional reservoir play.
Further investigating seals and confining-bed integrity to evaluated potential post-production

capacity for storage and sequestration of CO, and other fluids.
23



LBNL Budget-March 2024

Description Activity Commitments Available

a. Personnel 1,926,090.87 35,942.52 114,310.84
b. Fringe Benefits 344,260.22 ) 62,878.56
c. Travel 28,853.51 i 50,376.49
d. Equipment 467.126.66 e 93,410.30
e. Supplies 82,083.54 6,463.10 3,484.80
f. Contractual 2,092,971.62 793,030.75 24,334.63
g. Construction - i -
h. Other 173,434.61 7,475.37 7,308.02
ai' tzor:‘;" BllCEHEE B R 5,114,821.03 843,303.78 356,103.64
j. Indirect Charges 1,308,091.73 ) 168,658.82
k. Totals (sum of i and j) 6,422,912.76 843,303.78 524,762.46
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