Engineered Water for Improvement of Oil Recovery from Fractured Reservoirs

Project # 12842957

Kishore Mohanty, Michael Pyrcz, Wen Song (U. of Texas, Austin) & Manmath Panda, Raul Valdez (Kinder Morgan)

> U.S. Department of Energy National Energy Technology Laboratory April 2-4, 2024

Project Overview

- Funding
 - DOE: \$7,919,227
 - Cost Share: \$1,979, 808
- Overall Project Performance Dates
 - October, 2019-August, 2024
- Project Participants
 - The University of Texas: K. Mohanty, W. Song, M. Pyrcz
 - Kinder Morgan: M. Panda, R. Valdez

Project Objectives

- Identify wettability altering agents (using ions, surfactants and/or nanoparticles) to enhance oil recovery in a fractured carbonate reservoir (Goldsmith Field GLSAU) in West Texas
- Conduct field tests using the wettability agents
- Evaluate field tests
- Develop criteria to apply these chemical processes economically in carbonate reservoirs (Yates & SACROC)

Background

- Many carbonate reservoirs are heterogeneous and oil-wet.
 - Low oil relative permeability leading to low oil cut
 - ✓ High water cut
 - ✓ High water recycling
 - ✓ Low oil recovery
- Objective Improve oil recovery by wettability alteration using engineered waterflood
- Test fields are in the Permian Basin.
- Several operators have injected water and CO2 in this field for decades

Background

 Carbonates have a positively charged rock surface. Oil has negatively charged acidic and/or asphaltic components that tend to attach to the surface and result in oil-wetness

•Cationic surfactants can remove thick oil films through IFT reduction and alter wettability by forming ion pairs with the attached organic acids.

Background

- Goldsmith cumulative oil recovery < 20%
- Oil is bypassed due to -heterogeneity -oil-wettability
- Improve oil recovery by imbibing water into the bypassed regions
- Improve water-wettability by
 - -ions -surfactants
 - -nanoparticles
 - -weak acids

- Goldsmith: dolomite, 35 °C
- Yates: dolomite, 30 °C
- SACROC, Limestone, 60 °C

Engineered Waterflood Design

		Surfactant name	Catagory	Provider		
39 Surfactants Tested	1 2	Surfactant name	Catagory	Provider		
	3	Domiphen Bromide	Cationic	Fisher Sci.		
	4	STEPANQUAT 3712W	Cationic	Stepan		
	5	CTAC	Cationic	Fisher Sci.		
	6	DTAB	Cationic	Fisher Sci.		
	7	Aspiro 6420	Cationic	BASF		
	8	Soloterra 938	Anionic	Sasol		
	9	Soloterra 939	Anionic	Sasol		
	10	Soloterra 982	Anionic	Sasol		
	11	Soloterra 983	Anionic	Sasol		
	12	CalFax 10L-45	Anionic	Pilot		
	13	Calffax 16L-35	Anionic	Pilot		

Injection water salinity tested

PW	PW/2	PW/5	PW/10	PW/20	PW/40	DI
	(Twice					(Deionized
	diluted)					water)

Salts tested

Na2SO4 NaHCO3

Nano particles tested

Identified Surfactants & Brine (PW/16) Goldsmith

Tested Nanoparticles for Wettability Alteration

Oil-aged chip in SiNP solution

Imbibition into an oil-wet carbonate core

Nanoparticles do NOT alter wettability, but retain wettability 10

Identified EOR Mechanisms: Long Core Flood

Identified EOR Mechanisms: Heterogeneous Core Flood

Field tests –Goldsmith reservoir

Single Well Tests – Injection Soak Production

Refurbished Wells for Single-Well Tests

Well 157W

ISP Treatment Results

ISP Parameters											
Well	Surfactant Type	Shut In Time, Days	Dilution	Conc, ppm							
163	S2	30	1/16	5000							
172W	S2	32	1/16	2500							
162R	S2	62	1/16	5000							
157W	S2	32	1/16	5000							
214A	S2	31	1	5000							
164	S1	30	1	5000							
198W	S1	33	1/16	2500							
260A	S1	32	1/16	5000							

Observations

- Surfactant injection volume cover PV of 25' around the well
- 30 days of soaking adequate
- Dilution required ~1/16
- Surfactant concentration 2500-5000 ppm

Goldsmith Pattern Flood using EWF

Pattern 251A

- Rock quality good
- Relatively immature WAG – large oil target
- Short producerinjector distance – quick response

Pattern Performance 251A-Goldsmith

<u>Area Wells</u> 324R, 260, 237R, 236AR, 236R 259A, 260A, 237A, 235A

Core Wells

324R, 260, 237R, 236AR, 236R

Oil production data shows increasing trend

Pattern Performance 251A-Goldsmith

Field tests –Yates reservoir

Spontaneous Imbibition: Yates

Core Flood: Yates

WF: 50%, SF: 20%

22

Yates EWF Pattern

Yates EWF Pattern

Injection equipment set up at the well site

6807 Injectivity

6807 Pattern Performance: Yates

Field tests –SACROC reservoir

Imbibition in SACROC cores

28

Core Flood in SACROC

WF: 54.1%, LSF: 4.3%, LS+Surf: 13.3%

SACROC Patterns in Westside

Pattern	Start	OOIP,	Cum	Current		30
	Date	MBO	Rec, %	WC, %		
164-1	4/1/2020	4495.9	18	79%		
101-1A	4/1/2020	4235.79	15	83%		
159-6	4/1/2020	3793.51	11	83%		
100-1A	4/1/2020	1654.43	8	87%		
102-3	4/1/2020	1498.98	11	85%		
96-1A	4/1/2020	1332.61	14	84%	442	
					922A	
					10-17A 93-17A 93-17A	X
				102-2	996-4 94-3A	
				102/3 101	14 36-2	
			$ \rightarrow $	\langle / \rangle		
			105-2	107А-1	110-2A	
				107-1	ST	
			104-7 108-8	109.9		
			L			
			158-2 10	8-7		
			158-4A			
			}			
			159-8			
		6	160-16	}		
			83-5 166-24			
		164-1	IST 166-25			
			-((
			166-23			

101-1A Pattern Site

101-1A Pattern Performance: SACROC

Accomplishments to Date

Goldsmith

- Optimized brine salinity
- Identified surfactants for wettability alteration
- Identified weak acids that can improve WA
- Identified mechanism of oil recovery from core floods
- Developed geostatistical reservoir characterization
- Conducted 8 Injection-Soak-Production well tests
- Conducting a multi-well test

Yates & SACROC

- Identified salinity & surfactant for wettability alteration
- Identified patterns for multi-well tests
- Injection in Yates and SACROC continuing
- Production responses are being monitored

Lessons Learned

- Surfactants with low salinity change wettability of oil-wet rocks at low T; weak acids help; nanoparticles do not change wettability, but keep calcite surfaces water-wet
- Wettability alteration does not necessarily improve oil recovery in well-swept regions, but it does improve oil recovery from bypassed regions
- Modeling wettability alteration by changing the relative permeability (the common approach) does not capture the physics; use Pc also
- ISP tests show incremental oil
- Multi-well tests show incremental oil; need to be conducted for longer

- Monitor the multi-well test in Yates and SACROC
- Model these tests
- Develop criteria for application for this technology
- Final report

Gantt Chart

Gantt Chart																		
Task	Resource		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16
1. Project Management	КМ	✓ □	1															
2. Injection Composition	KM, WS																	
2.1. Brine Composition	KM, WS		V []														
2.2. Surfactant FormIn.	KM			V []													
2.3. Micromodel Dev.	WS				v 🗆													
2.4. Imbibition	KM																	
2.5. Core flood	KM																	
Milestone-A						* V												
3. Design of Single Well Test	MPY, MPA			,		•												
3.1. Collection of Field Data	MPA																	
3.2. Geostatistical Models	MPY			\mathbf{N}														
3.3. Modeling of Lab Tests	KM																	
3.4. Single-well Test Design	MPA, KM																	
3.5. Multi-well Tracer Design	MPA, MPY																	
Milestone-B	MPA																	
4. Single-Well Pilot Test	RV, MPA									\checkmark								
Milestone-C	MPA									ß								
5. Design of Multi-Well Test	MPA, MPY																	
Milestone-D	MPA											ß						
6. Multi-Well Pilot Test	RV, MPA																	
Milestone-E	MPA																	ŝ
7. Field Development Strategy	KM, MPA																	
Milestone-F	КМ																	1

Acknowledgements

- US DOE- NETL, Award # DE–FE0031791
- Center for Subsurface Energy & Environment, UT Austin
- Kinder Morgan