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Barriers to Enhanced Oil Recovery (EOR) and CO, Storage

Meeting the world's growing energy needs in the face of climate
change is one of the greatest scientific challenges of our time

1. Barriers in increasing recovery and improving operational efficiency
— Primary oil recovery from fractured unconventional formations is typically less than 10%.
— Environmental damage inflicted by hydraulic fracturing and fossil fuel emissions is problematic

— EOR in unconventional is far more challenging than conventional formations (Extremely low permeability and mixed
wettability)

2. How the barriers are being addressed

— Challenges associated with water-based EOR techniques leads to investigating several nonaqueous injection fluids
(CO,, rich natural gas, and nitrogen).
* lower viscosity than water, allows easier access to shale nanopores

— If anthropogenic CO, is injected, some of the CO,, will be trapped in the subsurface offsetting the CO, emissions that
result from combustion of the produced hydrocarbons
3. The extent the barriers have been/are being addressed by the project
— Field tests with CO, and natural gas in the Bakken and Eagle Ford formations
— Our project examines CO, and surfactants dissolved in CO, to increase EOR by changing the wettability
— Also examining if we can address conformance issues by creating foams



Project Goals — Enhancing Oil Recovery with CO,

End Product and Benefits:

v" Determine viability of CO, as an enhanced recovery agent for unconventional oil with
and without surfactants

v Determine if foams could help with conformance issues

v" Adding surfactants directly to CO, offers an advantage because it does not require
additional water injection

v If anthropogenic CO, is injected, some of the CO, will be trapped in the subsurface
offsetting the CO, emissions that result from combustion of the produced
hydrocarbons

v’ Surfactants all commercially-available, cost approximately $1-3 per pound, and
anticipated to be effective at concentrations of 0.1 wt% or less.

v Would add approximately $2-6 to the cost of one ton of CO,.



CO, for EOR in Unconventional Formations
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Potential wettability alteration mechanism - adsorption
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Other potential wettability alteration mechanisms
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Our experimental approach
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Conclusions from Prior Work

* Improving CO, EOR is possible by surfactant-induced wettability alteration

o Phase behavior: CO, and oil are not completely miscible at reservoir conditions

o CO,-solubility of surfactants: Nonionic surfactants are soluble in CO, to ~1 wt% at typical CO, EOR conditions

o CO,-oil-rock contact angle: CO,-soluble surfactants can alter shale wettability from oil-wet toward CO,-wet

o IFT experiments: surfactant had no effect on the CO,-oil IFT

o Foam experiments: surfactant also did not generate a CO,-oil or 0il-CO, foam

o GC analysis: CO,-dissolved surfactant recover a higher proportion of heavier oil in the first puffs than pure CO.,.

o Huff n’ puff experiments: In the best case, oil recovery increase by a surfactant dissolved in CO, was modest
(e.qg. 71% to 75%, by 0.1% of a branched tridecyl ethoxylate with 9 EO units), other surfactants had little effect or
detrimental effect

o Cost: surfactants were inexpensive ($1-3/pound), commercially-available, liquid, and used in dilute amounts (0.01-

0.1 wt%).
9



Current Direction

« Surfactants in prior study were relatively large,
with lengths between 3.82-4.26 nm, about the

size of n-C30
» Reviewed 60 papers with the latest information

on surfactants. @ Nonionic Surfactant dissolved in CO,
» Selected three classes of best surfactant based

on literature review

» Will age cores in fracture fluid prior to aging in
oil

« Will engage with field test operations

« Will examine conformance control with CO, and
surfactants

« Will add NMR to quantify the amount of CO,
stored and oil extracted from cores

4

Wettability Alteration

__P-

« As anthropogenic CO, becomes more available
through CO,-capture efforts, CO, EOR in
unconventional reservoirs will provide an
important economic driver for anthropogenic
CO, capture and result in more CO, being
stored permanently in the subsurface
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Prior CO,-Soluble Surfactants

3 water-soluble, essentially oil-insoluble, slightly CO,-soluble nonionic ethoxylated alcohols were selected.
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* Experimental conditions in subsequent tests were chosen to ensure the surfactant is completely dissolved in the CO, (27.6 MPa and 80 °C)
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New Candidates: CO,-Soluble Surfactants

An oil-miscible, slightly CO,-soluble, nonionic, water-insoluble propoxylated alcohol. PPO is
more CO,-philic than PEO (O’Neill 1998), but this surfactant is ~30 wt% soluble in oil, so much

will partition into oil.

Ind Eng Chem. Res. 1998, 37, 3067-3079
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CONCENTRATION OF TDA -8PO IN CO2 WT%

A small molecule purported to induce wettability change
(from oil-wet to water-wet) was selected.

@
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Hsieh C., Vrabec J. “Vapor-liquid equilibrium measurements of the binary mixtures
CO2 + acetone and CO2 + pentanones”. The Journal of Supercritical Fluids,
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Fig. 5. Comparison of vapor-liquid equilibria of CO,+3-pentanone at 313.15K, 313.15K,
and 353.15K from experimental data measured in this work (%), correlation by

PR+HV+UNIQUAC (-), and prediction by PR+VDW (-).
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New Candidates: Sorbitan laurate
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Occurrence of Two Fluid Phases

This surfactant can only work if there are two fluid phases,
an oil-rich phase and a CO,-rich phase,
present in the initially oil-wet pores
even at pressures at or slightly above
the minimum miscibility pressure (MMP).

Emphasis is placed on commercially available surfactants that are non-fluorous liquids to facilitate eventual
application at field-scale.
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Phase Behavior Apparatus for CO,-Oil PX Diagrams and Surfactant
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CO,-0il Pressure-Composition (Px) Diagram

The Px diagram for CO,-Eagle Ford oil mixtures at 77 °C ranging from 0-100% CO,
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Even though CO, is considered a very good solvent
for oil, there are still a wide range of conditions in
which two fluid phases co-exist, especially for CO,-

rich mixtures at pressure well above the MMP of

15 MPa

With two phases present, CO,-EOR may be
improved using surfactants by wettability
alteration. However, surfactants may also

cause reductions in CO,-oil IFT and may also
promote the formation of CO,-in-oil foams.
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Current Direction

 Reviewed 60 papers with the latest

information on surfactants.
energyzfuels
» Selected three classes of best surfactant
based On Iiterature reVieW pubs.acs.org/EF
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« Will examine conformance control with C02 Enhanced Oil Recovery in Unconventional Reservoirs
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High-Pressure Shale-OQil-CO, Contact Angles N=|NAToNAL
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Direct test of the central hypothesis of this work:

CO,-dissolved surfactants (0.1 wi%) can alter the wettability of shale from oil-philic toward CO.-
philic
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CO,-Oil Inter-Facial Tension Measurements N=|nAronAL

TL A8k oR
CO, + dead Eagle Ford oil, 80 °C, 27.6 MPa (4000 psi)
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TDA-9 dissolved in CO, did not reduce CO,-oil IFT
CO,-oil IFT is already very low

The slight increase in IFT may be due to experimental uncertainties

IFT reduction is NOT the
occurring at these

CO, + TDA-9 concentrations and is NOT the

. mechanism by which CO, EOR is

, expected to improve using
Note: These tests are done at much lower surfactant concentration (0.1wt%) than those reported
by groups (0.5wt% who did measure IFT reduction non io N ic su rfa ctants at O : 1wt%
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- NMR Imaging: CO,-EOR in shale
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How far does CO, penetrate shale?
Which EOR gases (CO,, nat gas, ethane)
penetrate farthest?

How much CO, is stored during EOR?

What size pores is oil produced from?
Which pores store CO,?

How does CO, effect pore size? Kerogen
content?

How far does surfactant penetrate?
Is wettability altered throughout the core?
Is oil produced by water wet or oil wet pores?
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