CO₂-EOR in Shale Resources

Angela Goodman¹, Bob Enick², Deepak Tapriyal¹, Lauren Burrows¹, Foad Haeri¹, Abdullah Shaheer², Eilis Rosenbaum¹ ¹National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA ²University of Pittsburgh, Pittsburgh, PA 15261, USA

2024 NETL Resource Sustainability Project Review Meet

April 2-4, 2024

Wyndham Grand Pittsburgh Downtown 600 Commonwealth Pl Pittsburgh, PA 15222

Barriers to Enhanced Oil Recovery (EOR) and CO₂ Storage

<u>Meeting the world's growing energy needs in the face of climate</u> <u>change is one of the greatest scientific challenges of our time</u>

1. Barriers in increasing recovery and improving operational efficiency

- Primary oil recovery from fractured unconventional formations is typically less than 10%.
- Environmental damage inflicted by hydraulic fracturing and fossil fuel emissions is problematic
- EOR in unconventional is far more challenging than conventional formations (Extremely low permeability and mixed wettability)

2. How the barriers are being addressed

- Challenges associated with water-based EOR techniques leads to investigating several nonaqueous injection fluids (CO₂, rich natural gas, and nitrogen).
 - lower viscosity than water, allows easier access to shale nanopores
- If anthropogenic CO₂ is injected, some of the CO₂ will be trapped in the subsurface offsetting the CO₂ emissions that result from combustion of the produced hydrocarbons

3. The extent the barriers have been/are being addressed by the project

- Field tests with CO₂ and natural gas in the Bakken and Eagle Ford formations
- Our project examines CO₂ and surfactants dissolved in CO₂ to increase EOR by changing the wettability
- Also examining if we can address conformance issues by creating foams

Project Goals – Enhancing Oil Recovery with CO₂

End Product and Benefits:

- ✓ Determine viability of CO₂ as an enhanced recovery agent for unconventional oil with and without surfactants
- ✓ Determine if foams could help with conformance issues
- ✓ Adding surfactants directly to CO₂ offers an advantage because it does not require additional water injection
- ✓ If anthropogenic CO₂ is injected, some of the CO₂ will be trapped in the subsurface offsetting the CO₂ emissions that result from combustion of the produced hydrocarbons
- ✓ Surfactants all commercially-available, cost approximately \$1-3 per pound, and anticipated to be effective at concentrations of 0.1 wt% or less.
- ✓ Would add approximately \$2-6 to the cost of one ton of CO_2 .

CO₂ for EOR in Unconventional Formations

Previously Established Oil Recovery (EOR) Mechanisms During CO₂ Huff 'n Puff

New proposed mechanism

Wettability alteration from oil-wet toward CO₂-wet during soaking (huff part of huff 'n puff) caused by the nonionic surfactants dissolved in the injected CO₂

In the oil-filled, oil-wet pores...during huff 'n puff

Potential wettability alteration mechanism - adsorption

Oil-philic & CO2-philic/oil-phobic & CO₂-philic Alkyl segment/polyethylene oxide segment

(1) Injection: CO₂ and surfactant flow through fractures

(2) <u>Soak</u>: CO₂ soaks into shale due to pressure gradient, surfactant adsorption begins

(3) <u>Soak</u>: CO₂ soaks further due to concentration gradient, oil moves toward surface

(5) <u>Production</u>: oil and CO₂ produced, some CO₂ remains in shale matrix

Other potential wettability alteration mechanisms

Figure 18. Mechanisms of wettability alteration by surfactants.

Our experimental approach

Our experimental approach

 \checkmark Target experimental conditions: 27.6 MPa and 80 °C 8

Conclusions from Prior Work

- Improving CO₂ EOR is possible by surfactant-induced wettability alteration
- *Phase behavior:* CO₂ and oil are not completely miscible at reservoir conditions
- CO_2 -solubility of surfactants: Nonionic surfactants are soluble in CO_2 to ~1 wt% at typical CO_2 EOR conditions
- CO2-oil-rock contact angle: CO2-soluble surfactants can alter shale wettability from oil-wet toward CO2-wet
- IFT experiments: surfactant had no effect on the CO₂-oil IFT
- \circ **Foam experiments:** surfactant also did not generate a CO₂-oil or oil-CO₂ foam
- \circ *GC* analysis: CO₂-dissolved surfactant recover a higher proportion of heavier oil in the first puffs than pure CO₂.
- Huff n' puff experiments: In the best case, oil recovery increase by a surfactant dissolved in CO₂ was modest (e.g. 71% to 75%, by 0.1% of a branched tridecyl ethoxylate with 9 EO units), other surfactants had little effect or detrimental effect
- Cost: surfactants were inexpensive (\$1-3/pound), commercially-available, liquid, and used in dilute amounts (0.01-0.1 wt%).

Current Direction

- Surfactants in prior study were relatively large, with lengths between 3.82-4.26 nm, about the size of *n*-C30
- Reviewed 60 papers with the latest information on surfactants.
- Selected three classes of best surfactant based on literature review
- Will age cores in fracture fluid prior to aging in oil
- Will engage with field test operations
- Will examine conformance control with CO₂ and surfactants
- Will add NMR to quantify the amount of CO₂ stored and oil extracted from cores
- As anthropogenic CO₂ becomes more available through CO₂-capture efforts, CO₂ EOR in unconventional reservoirs will provide an important economic driver for anthropogenic CO₂ capture and result in more CO₂ being stored permanently in the subsurface

Prior CO₂-Soluble Surfactants

3 water-soluble, essentially oil-insoluble, slightly CO₂-soluble nonionic ethoxylated alcohols were selected.

Experimental conditions in subsequent tests were chosen to ensure the surfactant is completely dissolved in the CO_2 (27.6 MPa and 80 °C)

New Candidates: CO₂-Soluble Surfactants

An oil-miscible, slightly CO_2 -soluble, nonionic, water-insoluble propoxylated alcohol. PPO is more CO_2 -philic than PEO (O'Neill 1998), but this surfactant is ~30 wt% soluble in oil, so much will partition into oil.

Indorama SURFONIC® TDA-8PO-0.1EO

i.e. C13(PO)8

Strongly oil-philic Slightly oil-phobic Somewhat CO₂₋philicStrongly CO₂-philic

Ind. Eng. Chem. Res. 1998, 37, 3067–3079 30
Solubility of Homopolymers and Copolymers in Carbon Dioxide
M. L. O'Neill, Q. Cao, M. Fang, and K. P. Johnston*
Department of Chemical Engineering. The University of Texas at Austin, Austin, Texas 78712
S. P. Wilkinson and C. D. Smith
Air Products and Chemicals Inc., Allentown, Pennsylvania 18195-1501
J. L. Kerschner and S. H. Jureller
Univer Research, Edgewater, New Jersey 07020

PPO more CO2philic than PEO

A small molecule purported to induce wettability change (from oil-wet to water-wet) was selected. 3-pentanone

Oil-miscible, 1 wt% water soluble, very CO₂-soluble

and 353.15K from experimental data measured in this work (^m), correlation PR+HV+UNIQUAC (-), and prediction by PR+VDW (-).

New Candidates: Sorbitan laurate

SPAN 20

Nonionic sorbitan laurate Oil-soluble, water-insoluble CO₂-solubility not yet determined

TWEEN 20 w + x + y + z = 20

 CO_2 -solubility not yet determined Expected to be more CO_2 -soluble than Tween 80

This surfactant can only work if there are two fluid phases, an oil-rich phase and a CO_2 -rich phase, present in the initially oil-wet pores even at pressures at or slightly above the minimum miscibility pressure (MMP).

Emphasis is placed on commercially available surfactants that are non-fluorous liquids to facilitate eventual application at field-scale.

Phase Behavior Apparatus for CO₂-Oil PX Diagrams and Surfactant Solubility in CO₂

- A Boundary of Air Bath
- B Cell Body
- C Window
- D Ruler
- **E** Thick-Walled Pyrex Tube
- **F** Magnetically-Driven Impeller
- **G** Sliding Piston and O-Ring
- H PDMS Overburden Fluid

CO₂-Oil Pressure-Composition (Px) Diagram

The Px diagram for CO_2 -Eagle Ford oil mixtures at 77 °C ranging from 0-100% CO_2

Even though CO₂ is considered a very good solvent for oil, there are still a wide range of conditions in which two fluid phases co-exist, especially for CO₂rich mixtures at pressure well above the MMP of 15 MPa

With two phases present, CO_2 -EOR may be improved using surfactants by wettability alteration. However, surfactants may also cause reductions in CO_2 -oil IFT and may also promote the formation of CO_2 -in-oil foams.

Current Direction

- Reviewed 60 papers with the latest information on surfactants.
- Selected three classes of best surfactant based on literature review
- Will engage with field test operations
- Will examine conformance control with CO₂ and surfactants
- Will add NMR to quantify the amount of CO₂ stored and oil extracted from cores
- As anthropogenic CO₂ becomes more available through CO₂-capture efforts, CO₂ EOR in unconventional reservoirs will provide an important economic driver for anthropogenic CO₂ capture and result in more CO₂ being stored permanently in the subsurface

energysfuels

pubs.acs.org/EF

A Literature Review of CO₂, Natural Gas, and Water-Based Fluids for Enhanced Oil Recovery in Unconventional Reservoirs

Lauren C. Burrows, Foad Haeri, Patricia Cvetic, Sean Sanguinito, Fan Shi, Deepak Tapriyal, Angela Goodman,* and Robert M. Enick*

Cite This: Energy Fuels 2020, 34, 5331–5380

energy&fuels

pubs.acs.org/EF

 $\rm CO_2\mathchar`-Soluble$ Nonionic Surfactants for Enhanced $\rm CO_2$ Storage via In Situ Foam Generation

Lauren C. Burrows, Foad Haeri, Deepak Tapriyal, Parth G. Shah, Dustin Crandall, Robert M. Enick,* and Angela Goodman*

Cite This: Energy Fuels 2023, 37, 12089–12100

Article

Review

High-Pressure Shale-Oil-CO₂ Contact Angles

• Direct test of the central hypothesis of this work:

 CO_2 -dissolved surfactants (0.1 wt%) can alter the wettability of shale from oil-philic toward CO_2 -philic

(C) Oil-aged shale chip,

CO₂ + TDA-9 soak

(A) Oil-aged shale chip, CO₂ soak

80 °C 27.6 MPa CO2 CO₂ +71° in 10 oil contact θ shale oil shale angle Intermediate oil/CO₂-wet **Oil-wet initially**

CO₂-Oil Inter-Facial Tension Measurements

CO₂+SURFONIC[®]

TDA-9 (0.1 wt%)-oil IFT

NATIONAL ENERGY TECHNOLOGY LABORATORY

CO₂ + dead Eagle Ford oil, 80 °C, 27.6 MPa (4000 psi)

CO₂-oil IFT

Note: These tests are done at much lower surfactant concentration (0.1wt%) than those reported by groups (0.5wt% who did measure IFT reduction

TDA-9 dissolved in CO₂ did not reduce CO₂-oil IFT CO₂-oil IFT is already very low

The slight increase in IFT may be due to experimental uncertainties

IFT reduction is NOT the occurring at these concentrations and is NOT the mechanism by which CO₂ EOR is expected to improve using nonionic surfactants at 0.1wt%

NMR Imaging: CO₂-EOR in shale

Spatially resolved fluid measurements

- How far does CO₂ penetrate shale?
- Which EOR gases (CO₂, nat gas, ethane) penetrate farthest?
- How much CO₂ is stored during EOR?

Spatially resolved pore measurements

- What size pores is oil produced from?
- Which pores store CO₂?
- How does CO₂ effect pore size? Kerogen content?

Spatially resolved wettability measurements

- How far does surfactant penetrate?
- Is wettability altered throughout the core?
- Is oil produced by water wet or oil wet pores?

