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Project Overview

Project Funding: 

$430,000 (DOE), $107,500 (Cost-share)

Expenditure to date: $ 428,768.86 (DOE), 

$107,692 (Cost-share)

Project Performance Period: 

01/05/2021 – 03/31/2024 (including NCE)

Project Manager:         Technology Manager: 

Mark Render    Dr. Joseph Stoffa

Overall Project Goal
Develop and demonstrate a field deployable, multifunctional smart pavement system made from domestic coal-derived solid 

carbon materials. This research will demonstrate the use of coke-like coal char, a key byproduct of the coal pyrolysis 

process, in the design and construction of a prototype multifunctional pavement system that could provide roadways with 

the capability for self-sensing, self-heating (deicing), and self-healing. 

Specific Objectives
(1) Establish processing-structure-property relationships of multifunctional coal-derived pavement materials

(2) Gather experimental data to evaluate its engineering performance and assess the feasibility for scale up

(3) Test and assess the performance of a prototype

(4) Techno-economic analysis (TEA)



Project Description and Objectives

Number of bridges in the U.S. by state (in k) 

Distribution of Bridge of States, in thousands

According to FHWA’s statistics by 2019, there are a total of 617,084 bridges in the U.S., 
among which 318,533 (51.6%) bridges are in states with freeze conditions.

The U.S. spends about $2.3 billion each year to 

remove highway snow and ice. Most de-icing is 

accomplished by mechanical methods (scraping, 

pushing or plowing) or by applying chemicals and/or sand 

as an abrasive.

 Mechanical deicing causes damage/ wear to 

pavement surfaces. Chloride-based salts as deicers resist 

break down in the environment and are corrosive to 

bridges, other metal structures, especially aluminum, and 

to the metal parts of vehicles, especially underneath the 

car. Damage from salt corrosion costs the U.S. up to 

about $19 billion per year.

Technology Background

Current ‘self-heating 

pavements’ are difficult to 

build and ‘non-recyclable’, the 

embedment of carbon fiber 

(for heating) lead to rapid 

deterioration of asphalt binder  



Technology Background

Coal-derived conductive asphalt concreteAsphalt BinderCoal-char (coke) network – conductiveLimestone skeleton

University of Tennessee, Knoxville (UTK) is developing a new class of multifunctional asphalt materials using 

coal-derived solid carbon. The percolated network formed by coal char within the aggregate system provide 

conductive pathway to enable pavement deicing, damage sensing, and potentially self-healing.



Technology Background
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The ‘one-stop-shop’ smart pavement solution for Ohmic heating (deicing), self-sensing, and self-healing. 



Background

Strategic Alignment to FECM Objectives

• This new strategy enables the production of 

multifunctional smart pavements at costs 

comparable to those of regular pavements. 

• Market benefits include the utilization of 

domestic coal resources in the infrastructure 

sector to enable multifunctionalities of future 

smart pavement systems.

• Impacts is significant in terms of the time and 

cost savings for winter roadway operations, 

reducing traffic delay and improving safety, 

reducing corrosion and environmental impacts 

caused by de-icing chemicals.
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From Laboratory to Field

Phase I Research
(2021.1 - 2023.8)

Coal char 

(feedstock)

Pavement 

Materials
Prototype Demonstration

Coal char Asphalt Field

Materials evaluation Prototype evaluation Pavement sections

Technology Approach

NCE
(2023.9 - 2024.3)
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Research Tasks

Research Tasks 

2021.1 2023.8

Task I & II – Project 

Planning & Market 

Analysis

Task III – Characterization 

and Processing of Coal Char 
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Project Execution Timeline

PI receives FN 

Approval (March 2021)

Team receives FN Approval 

(Nov. 2021)

Awaiting 

paperwork



A comprehensive survey was prepared to help understand the potential market, technological, and economical 
challenges of the proposed smart pavement technology. 

~200 Emails/Mails were distributed. 39 responses received by March 30th 2022, 
covering 30 US states, 2 Canadian Provinces, and South Africa. 

Accomplishments

Task 2 Market Analysis

     

        

     

         

    

    

                              

                              

       

                      

                              

                              

            

                              

                              

                              

                              

                              

                              

                              

                

                        

                             

      

            

                        

                         

                 

                              

                          

          

                            

                    

                            

                              

                              

                              



A comprehensive survey was prepared to help understand the potential market, technological, and economical 
challenges of the proposed smart pavement technology. 

Airport!

Key Takeaways: 

• Stakeholders (both government and industry) have high level of interest as compared to competing technologies.
• Most think that it will benefit the bridge (urban and rural) and airport most. Key benefits include: improving safety 

and reducing winter roadway maintenance cost.
• Main perceived technological barriers: pavement performance, design expertise, construction.
• Main perceived economic barriers: Construction cost and production cost.
• Main perceived regulatory barriers: Construction and Design Specifications.

Accomplishments

Task 2 Market Analysis



Task 3.1: Characterization and Processing of Coal Char/ Coke

In-house imaging process algorithm 

(code) for microstructural analysis 

Four (4) different coal char types:

• Metallurgical coke from two sources (3 types)

• Pitch coke  

Geometric feature 

extraction

Parameter Description

Porosity The ratio of the pixel count of the total area 

occupied by pores and the total field area of the 

image

Perimeter
The total length of the boundary around the 

detected image within the measure frame

Equivalent 

diameter

Diameter of a circle with the same area A as the 

region, defined as 

Length/ 

Breadth

Length: Length of the major axis of the ellipse 

that has the same normalized second central 

moments as the region

Breadth: Length of the minor axis of the ellipse 

that has the same normalized second central 

moments as the region

Roundness

A parameter quantifies the shape of the pore 

using area A and perimeter P, i.e. 

4A



2

4 A

P



Optical 

Stereomicroscopy

Accomplishments



Processing of 3D 

XRM data 

(DragonFly Pro)

Micro-CT

Met Coke-1: Porosity: 45%, Pore volume: 54.91mm3 , Pore Surface Area: 1138mm2 

Met Coke-1 (Type I): Porosity: 38%, Pore volume: 38.57mm3 , Pore Surface Area: 1348mm2 

Pitch Coke: Porosity: 59%, Pore volume: 210.09mm3 , Pore Surface Area: 1525mm2 

Met Coke-1 (Type II): Porosity: 17.26%, Pore volume: 90.24mm3 , Pore Surface Area: 548mm2 

Accomplishments

Task 3.1: Characterization and Processing of Coal Char/ Coke
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Aggregate Crushing Value (ACV) Test

Electrodes

Sample in 

insulative 

Sleeve

L

S

R

(Electric) Volumetric Resistivity Test

Micro-Deval Test (Abrasion resistance)

Identical 

Sample Pieces

Senor concurrently serves as heating element and 

measures temperature change

Thermal Conductivity Test (TPS)

Key Takeaways (Subtask 3.1): 
• Metallurgical coke has Low electric resistivity (<0.2 Ω.m measured in granules), reasonable mechanical strength to be used 

in pavements. However, it has high connected porosity (therefore low compressive strength (high ACV) and low abrasion 
resistance (high % loss as tested by Micro-Deval)). Intermediate thermal conductivity.

• Material properties are not sensitive to source. (Different pore-sizes are seen from difference sources)
• Met coke is suitable for conductive pavement development. Strengthening mechanical properties will be beneficial.
• Pitch coke is NOT suitable for conductive pavement development due to its LOW electric conductivity and has large volume 

of isolated pore structure (therefore difficult to improve).

Accomplishments

Task 3.1: Characterization and Processing of Coal Char/ Coke



Vacuum Assisted Polymer Infusion of 
low-cost thermoset polymers

Porosity: <20%

Porosity: 55.2%
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Task 3.2: Strategies to Enhance Coal Char Mechanical Properties 
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Accomplishments
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Task 4: Developing Multifunctional Coal-char Bearing Asphalt Concrete

(d)

Coal-char  Mineral Aggregate 

Asphalt 

Mixing 

Compaction 

Ohmic Heating

Strain Sensing

Wear Surface (1”)

Leveling Coarse (2”)

CDC-SP (1/2” to 1”)

CDC-SP layer

IceT1

T2

T3

Ice

Heating

Heating for 45 min. (Air 
Temp: -10℃)

Accomplishments



Task 4.1: Mixture design and engineering properties (complete)

Accomplishments
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Task 4.1: Mixture design and engineering properties

Accomplishments
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Key Takeaways: 
• Both ‘Superpave’ and ‘Marshall’ mixture design methods were used to design Coal-char bearing Stone Mastic Asphalt 

(SMA) mixtures.  The carbon content calculation satisfies the coal derived carbon wt% > 50% and total carbon wt% >70% 
requirement by FOA.

• The volumetric resistivity (main functionality) of the coal-char bearing asphalt is 1-2 magnitudes lower (better in 
performance!) than any existing technology in the market or under development, while showing remarkable cost-
performance metrics. 

• This technology also do NOT require any modification to the production and paving equipment or practice. Making it 
easier to adopt by the road building industry. Future research may be conducted in collaboration with asphalt producer 
and contractor to further quantify its constructability.



Task 4.2: Mixture design and engineering properties

Accomplishments
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Key Takeaways: 
• Coal-char bearing HMA mixtures have lower shear strength and resilient modulus than the baseline with 100% limestone 

aggregate; however, the material performance has good potential to meet AASHTO/ ASTM standard to be used in 
pavement structure.

• Coal-char bearing HMA has acceptable durability against moisture damage, good fracture toughness, and acceptable 
resistance to rutting damage as tested by APA

• Overall coal-char bearing HMA has good potential to meet industrial standards for pavement applications.



Task 3.3, 4.4: Functionalizing pavement for sensing (pilot)

Accomplishments

Adjacent probe 
resistance

Opposite probe
resistance

Figure 1

Figure 2

Figure 3

Figure 4Electric Impedance Topography (EIT)



Task 4.3: Benchtop/Laboratory-Scale Prototype Development and Testing (completed)

1. Mold
2. Compacting 

base layer
3. Embedding 

Electrodes

4. Compacting conductive 

asphalt layer and testing

5. Compacting surface 

overlay and testing

Base layer (Asphalt concrete)

Functional layer (Cal char 

containing conductive asphalt)

Surface overlay (SMA)

Electrodes

Accomplishments



Task 4.3: Benchtop Prototype Development and Testing

Camera

Environmental Temperature: -10 ℃; power supply: 12V, ~50-60W

RTD Sensor 

+ RH Sensor

Power Supply Thermocouples

Accomplishments



Task 4.3: Benchtop Prototype Development and Testing

Accomplishments
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Task 4.3: Development of Thermal Network Models and Control
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Accomplishments
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Task 4.3: Development of Thermal Network Models and Control

Accomplishments

(6 ’’/152.4 mm)

(0.75 ’’/19.05 mm)

(4 ’’/25.4 mm)

(1 ’’/25.4 mm)
▪ Pittsburgh, Pennsylvania (ASHRAE climate zone 5A, cool humid)

▪ Minneapolis, Minnesota (ASHRAE climate zone 6A cold humid)

▪ Fairbanks, Alaska (ASHRAE climate zone 8, subarctic/arctic)

Whole-year heat transfer simulations 

❖ Typical meteorological year 3 (TMY3) weather data



Task 4.3: Performance Simulation
Pittsburg, PA Minneapolis, MN

Accomplishments

Fairbanks, AK
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Takeaways: 
• A thermal network model was developed for the heating pavement based on the finite difference approach. The model is 

able to accurately model the thermal behavior of the heating pavement (i.e., temperature profile, heating power (and 
control), and energy consumption etc.). 

• The model is able to consider various environmental variables including air temperature, wind speed, solar irradiation etc. 
The model can be used to predict the power requirement and energy consumption of the heating pavement based on its 
design location.

• Current energy use prediction does not consider precipitation prediction – i.e., heating is not required when no 
precipitation is forecasted even pavement temp. is below 0 ℃. Therefore actual energy use should be much lower. This 
feature will be added to the model development this quarter.
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Task 5.1: Field Demonstration
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Task 5.1: Field Demonstration
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Takeaways: 
• The coal-carbon based pavement asphalt is field constructible.
• Scaled-up heating experiment was conducted.
• Due to the warm ambient temperature, demonstration of deicing behavior is challenging.



Task 5.2 TEA Analysis

Accomplishments
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Task 5.2 TEA Analysis (in progress)

Accomplishments

Bridge Parameters
Bridge type: Concrete cast-in-place
Lane number: 2
Length: 390 ft (118.9 m)
Width: 24 ft (7.31 m)
Average Daily Traffic (ADT): 24000 Veh
Discount rate: 4.0%
Life cycle: 50 years
Year 0: 2024
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• Mechanical and chemical methods

Coal-derived carbon enabled smart 
pavement (CDC-SP) 

• Self-heating de-icing system 

Cost & Benefit inventory of CDC-SP

Alternative de-icing systems 



Accomplishments

Operation and Maintenance (O&M) Cost of CDC-SP  

Initial Construction Cost of CDC-SP  

❖ Cost of non-conductive asphalt pavement
❖ Cost of electrically conductive coal-char charged asphalt mixture

❖ The electric power cost of the self-heating pavement was quantified by a 
thermal network mode with experimental calibration.

Cost-benefit estimation of CDC-SP  

Task 5.2 TEA Analysis (in progress)
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Task 5.2 TEA Analysis
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Task 5.2 TEA Analysis
Life-cycle Cost Analysis
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Task 5.2 TEA Analysis
Sensitivity Analysis
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Takeaways: 
• The coal-carbon based asphalt material is among the lowest cost in the market to achieve electrically 

conductive pavement.
• LCCA shows acceptable payback in areas with mildly cold temperature. For areas with very cold 

temperature, solar charging is needed to payback.
• The payback period is much shorter in urban areas where ADT is high.



Graduate Students Supported

Undergraduate Researchers Supported

Yucen Li 

(PhD student)

Yanhai Wang 

(PhD Student)

Adam Brooks 

(former PhD student, currently 

R&D staff at ORNL)

Yawen He 

(former PhD Student, 

current post-doc at UTK)

Emily Stanton
Griffin Bedell

Shayan Seyfimakrani (Currently 

working at GDOT) Hsun Jui 'Ray' 

Chang

Resee Sorgenfrei 

(now PhD student at 

UTK)

Training and Workforce Development



Accomplishments

• A new type of multifunctional conductive asphalt material was developed using coal derived solid 
carbon (coal char/coke). The material has far better electrical conductivity than existing 
conductive asphalt materials. Experimental tests conducted so far indicate strong potential to 
pass AASHTO specifications.

• A polymer-infusion technique was developed for processing coal-char to enhance its mechanical 
properties. Test results indicate that the process is effective and the polymer-infused coal char is 
strong, electrically conductive.

• Benchtop scale prototype was produced and deicing performance demonstrated under lab 
conditions.

• Simulation models were developed to assist the design and performance prediction of this new 
multifunctional pavement system. A control algorithm is developed for pavement heating control. 

• Full-scale prototype constructed and tested.
• LCCA is completed to provide quantitative information for cost-benefit analysis.

Publication: Several publications are under review/preparation. Journal papers were submitted to 
Journal of Applied Thermal Engineering, Fuels, and Journal of Cleaner Production. Research findings 
and results are to be disseminated at conferences including ASCE Cold Region Engineering 
conference, Transportation Research Board (TRB) annual meeting, and ASCE Construction Research 
Congress. 

Summary
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