Coal Enhanced PEEK Filament Production for Additive Manufacturing in Industrial Services DE-FE0032146

Dr. Lakshmi Vendra, Baker Hughes Dr. Patrick Johnson, University of Wyoming

> U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 2-4, 2024 Baker Hughes Confidential

Project Overview

- Project Duration: 24 months
- Start Date: July 12, 2022
- Kick-off meeting: September 8, 2022

Project Objectives

Coal-enhanced PEEK filament for Additive Manufacturing

Transform coal waste into commercially valuable products through Additive Manufacturing

Coal Waste → Graphene Oxide → Enhanced PEEK filament → Printed product

Project Status

Task/		Completion	
Subtask	Milestone Title & Description	Date	Verification Method
1.0	Kick-off meeting	Sen 8 2022	Project kick-off meeting
1.0		500,2022	Being able to extrude filament with coal
	Successful integration of coal in		and inspecting for desired volume
2.3	PEEK filament	Sep 2023	fraction
	Coal Enhanced Filament	March	
2.4	Performance Data	2024	Coal-derived material property data
	Successful printing of test		Print test coupons to desired shape and size using commercial 3D printer and coal- enhanced PEEK filament. Verified for
2.5	coupons using modified PEEK	June 2024	dimensional accuracy.

Project Objectives

Performance Period 1: 12 months

- Development of coal-enhanced PEEK filament
- Integration of coal-enhanced PEEK filament with commercially available 3D printer

Performance Period 2: 12 months

- Print and test a product to quantify properties of coal-enhanced PEEK filament
- Compare & Contrast performance to quantify benefits

Scope: Successfully print product using coal-enhanced PEEK filament

Project Team

Baker Hughes Team

- Dr. Lakshmi Vendra (PI)
- Brian Wieneke
- Dr. Wei Chen
- Chad Yates
- David Leach
- Kathleen Hanson
- Ryan Antle
- Monte Lively Jr.

University of Wyoming Team

- Dr. Patrick Johnson
- Anthony Richard
- Hud Wahab
- Jacob Heil
- Maxwell Rathweg
- Jacob Wozny
- Caleb Johannesmeyer
- Abigail Gruner

Technology Background

	temperature [C]	Sm j	
Ordered mesoporous carbon	1500	2.82	[39]
Graphite	-	2.12	[38]
Graphene		0.26	
Graphite	-	2.50	[66]
Reduced GO		2.42	
Reduced GO	-	1.50	[67]
Anthracite	950	1.00	[34]
Flake graphite	-	10.6	[42]
Natural graphite		19.7	
Graphene microflower	2000	4.5	[60]
	3000	21.2	
Catalytic-microwave	-	53.1	[63]
exfoliated graphite oxide			
Graphite	2500	8.98	This
HNO3 rGO nanocrystals	2000	2.38 (2.63)	work
(Hummers' rGO	2500	4.81 (4.34)	
nanocrystals)			

Evolution of structural and electrical properties in coal-derived graphene oxide nanomaterials during high-temperature annealing

journal homepage: www.elsevier.com/locate/diamond

Ana Paula Martins Leandro, Michael A. Seas, Kaitlyn Vap, Alexander Scott Tyrrell, Vivek Jain, Hud Wahab^{*}, Patrick A. Johnson^{*}

Department of Chemical Engineering, University of Wyoming, 1000 E University Avenue, 82071 Laramie, WY, United States of America

Technology Background

19.7

4.5

21.2

53.1

8.98

2.38 (2.63)

4.81 (4.34)

[60]

[63]

This

work

2000

3000

2500

2000

2500

Natural graphite Graphene microflower

Catalytic-microwave

(Hummers' rGO

nanocrystals)

Graphite

exfoliated graphite oxide

HNO3 rGO nanocrystals

Evolution of structural and electrical properties in coal-derived graphene oxide nanomaterials during high-temperature annealing

Ana Paula Martins Leandro, Michael A. Seas, Kaitlyn Vap, Alexander Scott Tyrrell, Vivek Jain, Hud Wahab^{*}, Patrick A. Johnson^{*}

Department of Chemical Engineering, University of Wyoming, 1000 E University Avenue, 82071 Laramie, WY, United States of America

University of Wyoming - Major project activities

Equipment in place

- o Extruder system
- Injection molding system

Extruder system parameters: Initial parameters determined with virgin PEEK

- Temperature profile in extruder
- Extruder screw speed
- Airpath speed
- Spooler speed

Injection molding system parameters: Initial parameters determined with virgin PEEK

- Heater and mold temperatures
- Injection stage times
- Injection stage pressures

University of Wyoming - Major project activities

Materials preparation achieved

- Coal char (grinding, sieving, drying)
- Graphene oxide (synthesized from coal char)
- PEEK polymer (from Solvay, drying)

Blending of polymer/filler

- A. Addition of coal char and polymer to extruder
- B. Peak particles are coated with filler material
- C. Blended at high temperature and shear rate through extruder

- Production of mechanical testing coupons via injection molding
- Graphene oxide and reduced graphene oxide filler tested

University of Wyoming - Major project activities

Characterization of materials

Material characterizations									
	Coal-derived filler								
Tensile Strength Tensile Modulus Tensile Elongation, Break Flexural Strength Flexural Modulus Hardness Izod Impact (notched) Thermal Conductivity	Coefficient of Linear Thermal Expansion Deflection Temperature at 0.45 MPa Glass Transition Temperature Dielectric Strength (Short Term) Surface Resistance Water Absorption Density Crystallinity	Density Surface Area Particle Size Thermal Conductivity Molecular Weight Degradation Temperature							

Tensile testing comparison of fillers

Filament production

Filament production for testing at Baker Hughes continues

Spools of 0.5% GO/PEEK and 0.5% rGO/PEEK have been made and shipped

Ongoing activities

- Analysis of aGO200 and aGO400 mechanical testing results
- Perform DSC on annealed GO/PEEK samples

Future activities

- Testing of printed samples from Baker Hughes
- Examine drying method for PEEK before blending
- Complete remaining characterizations

Unmodified Filan Resin ^{*1}	n <i>ent or</i> PEE	K			
Coal Derived Ad	<i>ditive^{*2}</i> Coal	derived char (plain, GO	, rGO)		
Coal Additive So	ource ^{*3} Powe	der River Basin coal (sub	obituminous)		
	Injection m	olded coupon			
	performanc	e			
	Units	Unmodified	PEEK + coal char	PEEK + GO	PEEK + rGO
Cost	\$/kg	~100-200	<100	TBD	TBD
Additive Loading	Wt.	0	1-40	0.1-4	0.1-4
	%				
Tensile Strength	MPa	101.5	96.5-108.6	98.1-99.2	87.6-99.3
Tensile Modulus	MPa	5190	5164-8049	4785-5099	4571-5000
Tensile Elongation, Break	%	109	3.6-39.9	29.2-90.5	16.3-64.4
Flexural Strength	MPa	141	152-179	156-163	152-165
Flexural Modulus	MPa	3787	3336-5545	2890-3429	3770-3906
Hardness ^{*5}	M, R, Shore	84.519	TBD	TBD	TBD
	D				
Izod Impact (notched)	J/m ²	800019	TBD	TBD	TBD
Coefficient of Linear	10 ⁻⁶ m/(m	45 ¹⁹	TBD	TBD	TBD
Thermal Expansion	°C)				
Deflection Temperature	°C	15219	TBD	TBD	TBD
at 0.45MPa					
Glass Transition Temperature	°C	136.6	140 7-143 8	138 9-142 3	1/1 7-1/3 2
Glass Hansition Temperature	C	150.0	140.7-143.0	130.7-142.5	171.7-173.2
Thermal Conductivity	W/mK	0.3219	TBD	TBD	TBD
Dielectric Strength (Short	MV/m	2319	TBD	TBD	TBD
Term)					
Surface Resistance	Ohm/sq	NA	>20 MOhm	>20 MOhm	>20 MOhm
Water Absorption ^{*6}	Wt.	0.4519	0.18-0.33	0.02-0.1	0.02-0.45
	%				
Density	g/cm ³	1.30	1.27-1.37	1.20-1.27	TBD 15
Crystallinity	%	33.3	26.2-34-8	32.4-35.9	32.9-42.0

Technical/Economic Challenges

Dorocived Dick	Risk Rating			Mitigation/Decrease Strategy						
	Probability	Impact	Overall	Miligation/Response Strategy						
Financial Risks:										
Raw material supply risk	Low	High	High	Well-established relationships with raw material suppliers. Look for alternative suppliers as applicable						
Cost/Schedule Risks										
Cost estimates could be affected by delays in project schedule	Low	Medium	High	Regular report-outs to ensure the project is on schedule and doesn't impact cost estimates						
Technical/Scope Risks										
Coal derived material is not compatible with PEEK	Medium	Medium	High	Robust test matrix for blending parameters. Go/No go decision						
Modified PEEK filaments cannot be extruded	Medium	Medium	High	Leverage Univ. of Wyoming extrusion expertise. Go/No go decision						
Modified part performance is not improved	Low	Medium	High	Explore economic impacts, consider other end use applications						
Health, Safety, & Environmental Risks:										
Competency of operators working on 3D printers and handling coal-enhanced PEEK material	Low	High	High	AM process and procedures handling 3D printers and polymer materials following HSE guidelines and standards are well established at Baker Hughes.						

Project Status

Task/		Completion	
Subtask	Milestone Title & Description	Date	Verification Method
1.0	Kick-off meeting	Sep 8, 2022	Project kick-off meeting
			Being able to extrude filament with coal
	Successful integration of coal in		and inspecting for desired volume
2.3	PEEK filament	Sep 2023	fraction
			Print test coupons to desired shape and size
			using commercial 3D printer and coal-
	Successful printing of test		enhanced PEEK filament. Verified for
2.4	coupons using modified PEEK	June 2024	dimensional accuracy.

Plans for future testing/development/ commercialization

After the project:

- Partnering with raw material suppliers to commercialize enhanced PEEK filament fabrication
- Collaborating with OEMs to address scalability challenges
- Wyoming state investing in demonstration plant for coal char and pilot plant for graphene oxide material generated from coal wastes improves future availability, utilization and applications of the material

Outreach and Workforce Development Efforts or Achievements

- Workforce Development
 - 2 post-doctorate students at University of Wyoming
 - 2 undergraduate students currently working on the project
 - 2 previous undergraduates (graduated)
 - 1 graduate student (MS)

Summary Slide

- Successfully developed PEEK filament enhanced with coal additives coal char, graphene oxide & reduced graphene oxide
- Filament extrusion process and optimal volume fractions of additives established
- Printing trials ongoing for using coal-enhanced PEEK filament on commercial 3D printer

Next Steps:

- Print and test a product to quantify properties of coal-enhanced PEEK filament
- Compare performance & quantify benefits

Appendix

Organization Chart

Gantt Chart

Report or Mileston	e ♦ Go/No-go	2022 2023						3					2024									
Milestone Description	Month	AS	0	Ν	D.	JF	MA	Μ	J	J.	A	S	0	N	D	J	F	М	A	м.	J.	J
	Month #	12	3	4	5	67	89	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	Task Name																					
1. Project Kickoff																						
Performance Period 1			Pe	erfo	orm	ance	e Pei	iod	1													
Task 2.0	Fabrication and Testing of Filaments																					
Subtask 2.1	Quality analysis of coal derived materials																					
Subtask 2.2	Coal enhanced filament fabrication																					
Subtask 2.3	Extrusions of filaments																					
Milestone Successful integration of coal in PEEK filament																						
Subtask 2.4	Preliminary 3D Printing of test coupons																					
Milestone	Successful printing of test coupons using modified PEEK																					
Performance Period 2													P	erf	orn	nang	ce P	erio	od 2			
Task 3.0	Commercial Prototyping and Testing																					
Subtask 3.1	Test sample printing and baseline characterization																					
Milestone	Property table																					
Subtask 3.2	Baseline model part selection																					
Subtask 3.3	Model 3D part printing & process parameter developmen	t																				
Milestone	Successful printing of baseline part																					
Subtask 3.4	Performance and functional testing																					
Report Out																						