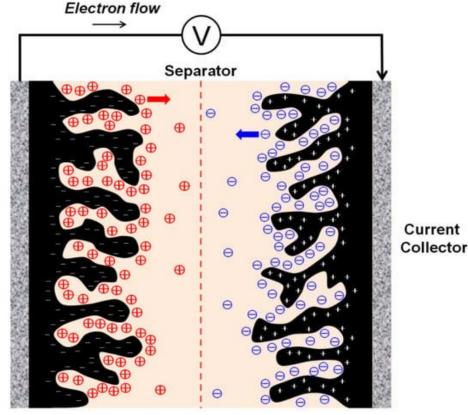

Graphene-Based Carbon Electrode Material for Improving the Performance of Supercapacitors

Viet Hung Pham Research Engineer, NETL Support Contractor

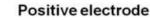
This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Viet Hung Pham^{1,2}; Congjun Wang¹; Yuan Gao^{1,2}; Jennifer Weidman, Ki-Joong Kim^{1,2}, Christopher Matranga¹

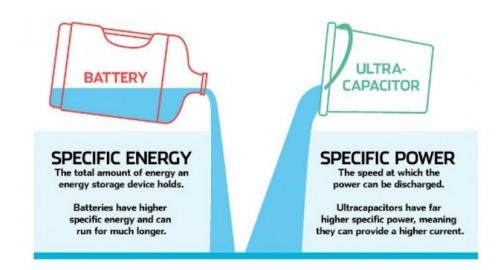
¹National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA ²NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA


- Introduction of Supercapacitor and Its Application
- DOE Technical Assessment on Supercapacitor
- How to Make a Better Supercapacitor
- Supercapacitor Electrode Materials
 Supercapacitor Electrode Materials
- Recycling Chemical Activator Toward Sustainable Production
- * Potential Environmental Impact (Elemental Analysis of Feedstock)

Summary



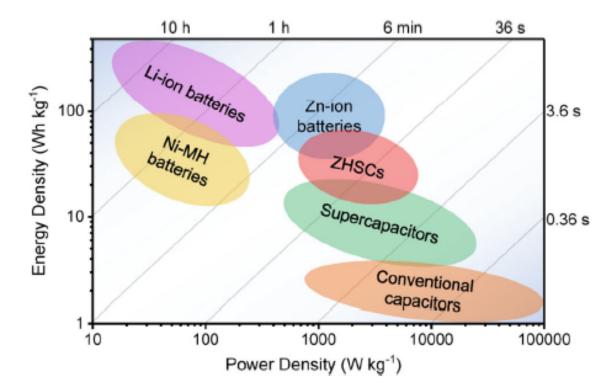
What is Supercapacitor ?

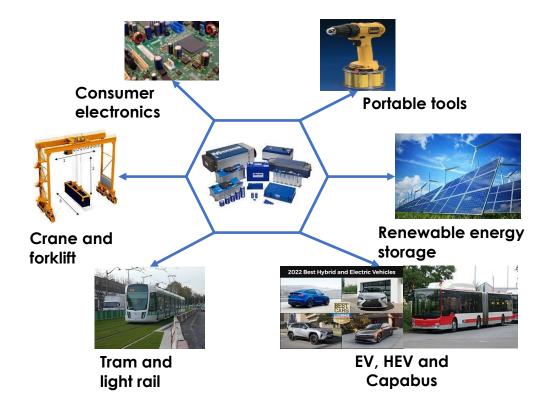

NATIONAL ENERGY TECHNOLOGY LABORATORY

Negative electrode

Schematic illustration of the porous carbon-based supercapacitor (Materials 2020, 13(18), 4215)

(https://interestingengineering.com/science/could-ultracapacitors-replacebatteries-in-future-electric-vehicles)


- Supercapacitors, also called ultracapacitor or electrochemical capacitors, consist of two electrodes separated by an ionpermeable membrane (separator), and an electrolyte ionically connecting both electrodes.
- Porous carbons are dominated electrode materials.
- Supercapacitors vs. batteries = high power density vs. high energy density

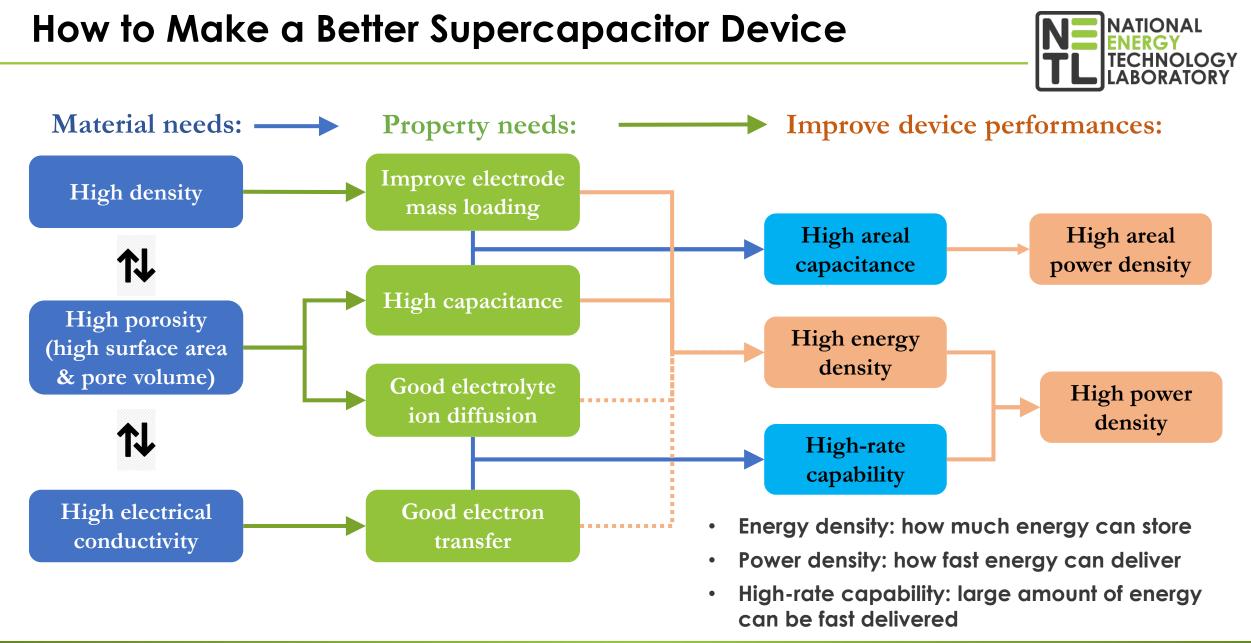

Supercapacitor's Application

Supercapacitors vs. other electrochemical storage devices

Supercapacitor applications

⁽Carbon Energy, 2020, 2, 521–539)

DOE Technology Assessment



Findings from Storage Innovations 2030 Supercapacitors July 2023

- Released as part of the Long-Duration Storage Shot, contains the findings from the Storage Innovations 2030 strategic initiative
- Current state-of-the-art: activated carbon, offshore supply chains
- Materials: ~ 71% of device cost, with activated carbon as most significant component
- Graphene could improve performance by >72%, but is expensive, industrial-scale sources do not exist
- Graphene electrodes identified as key innovation for improving performance and levelized cost of storage (LCOS)

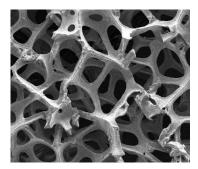
<u>(https://www.energy.gov/sites/default/files/2023-</u> 07/Technology%20Strategy%20Assessment%20-%20Supercapacitors_0.pdf)

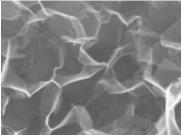
NET NATIONAL ENERGY TECHNOLOGY LABORATORY

* Most supercapacitor electrode materials are <u>high surface</u> <u>area carbons</u>:

	Activated Carbon	Carbon Nanotube	Graphene
Surface area (m²/g)	1,000–3,000	100–1,300	200-2,600
Electrical conductivity	Low	Medium to high	Medium to high
Density	Low to medium	Low	Low
Potential application	Commercial practice	Research only	Highly potential – research stage

- * Commercial device requirements for electrode materials:
 - Electrode mass loading: $\geq 10 \text{ mg/cm}^2$
 - Electrode thickness: \geq 200 μ m
 - Areal capacitance: \geq 2 F/cm²
 - Active material is about 30% mass of supercapacitor cell


An overview of the design of carbon materials for practical application, and a scheme of full supercapacitors (J. Mater. Chem. A, 2020, 8, 21930)



NATIONAL ENERGY TECHNOLOGY LABORATORY

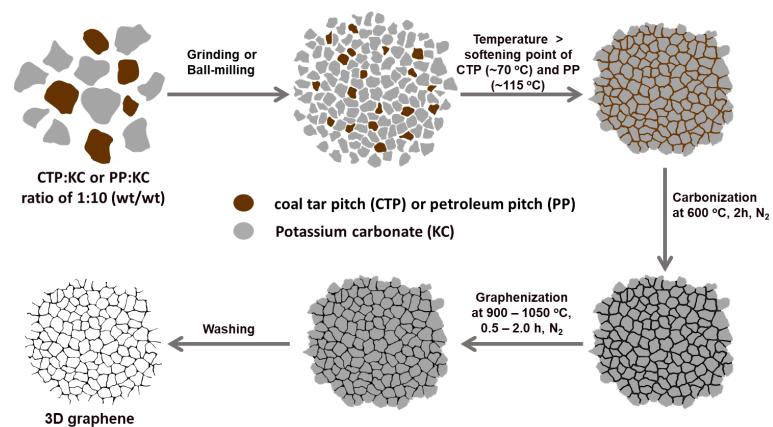
3D graphene as the most potential electrode material for supercapacitors

* 3D graphene assembling based on graphene oxide (GO)

- Self-assembling of GO
- Reduction of 3D GO assembly
- Concurrent reduction and 3D construction

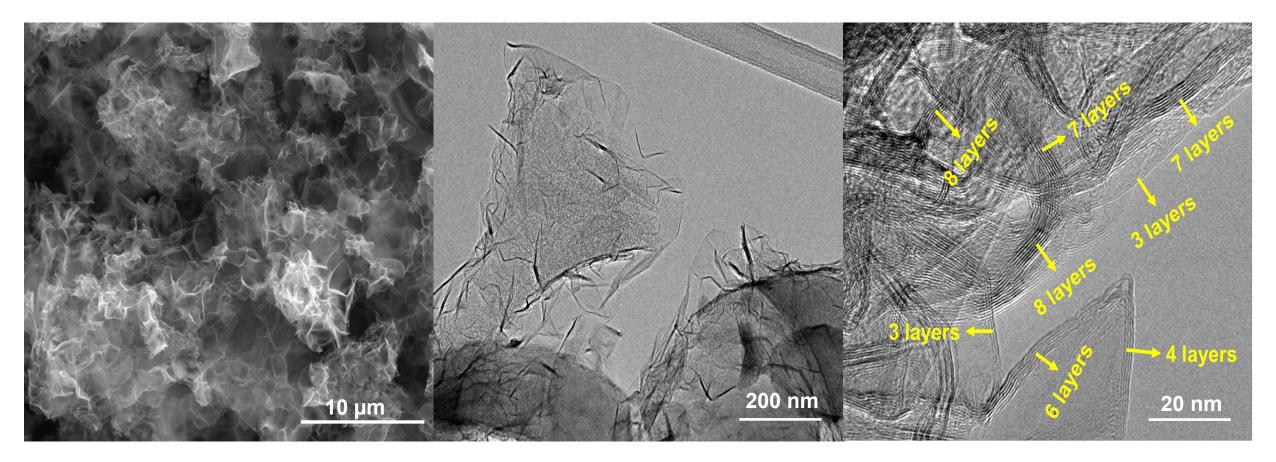
3D graphene construction from hydrocarbons

- Chemical vapor deposition (CVD)
- On-site polymerization (OSP) of nongaseous hydrocarbons
- 3D graphene building with inorganic carbon compounds
 - Alkali metal oxide and CO
 - Alkali metal and CO/CO₂



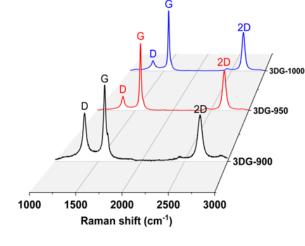
General diagram about the types of 3D graphene materials (Chem. Rev. 2020, 120, 10336–10453)

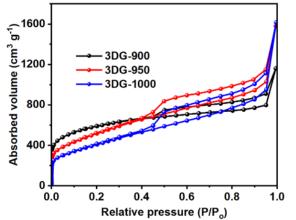
Synthesis of 3D graphene using coal tar pitch and petroleum pitch feedstocks:



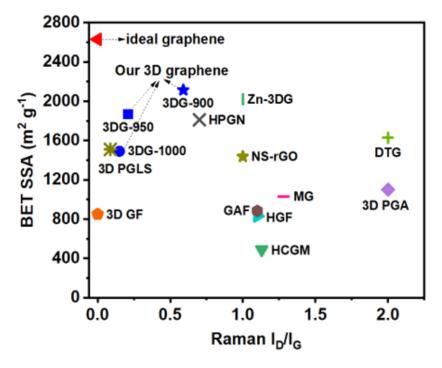
Photograph of ~ 3.0 g of 3DG-900 in 100 mL petri dish (tap density ~0.035 g/cm³)

- Low cost and scalable method to produce high-quality 3D graphene
- Recycling 95% KC for at least 10 times without compromise quality of 3D graphene





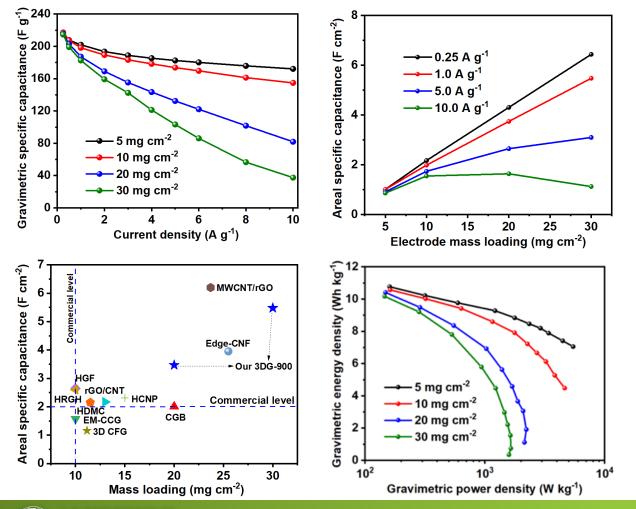
SEM and TEM images of 3DG-900



- Raman I_D/I_G : 0.15 0.7 • Raman I_{ep}/I_G : 0.60 – 0.6
- Raman I_{2D}/I_G: 0.60 0.67
 → Highly crystalline → high electrical conductivity (1300 2400 S/m)

- Hierarchical pore size distribution
- BET specific surface area (SSA): 1,500–2,100 m²/g
- Total pore volume: 1.8 –
 2.5 cm³/g

Raman and N₂ isotherms of 3DGs



Comparison of BET SSA and Raman I_D/I_G of 3D graphene with other graphenes with high SSA in literature. (Holey graphene framework (HGF), 3D porous graphene-like sheets (3D PGLS), highly compressible graphene monolith (HCGM), 3D-printed graphene aerogels (3D PGA), wet-spun graphene core-shell aerogel fiber (GAF), non-stacked rGO (NS-rGO), 3D graphene foam (3D GF), unstacked double layer templated graphene (DTG), hierarchical porous graphene networks (HPGN), microporous graphene (MG), Zn-guided 3D graphene (Zn-3DG)).

3D graphene as electrode material for supercapacitors with ultrahigh areal capacitance :

- The microscopic 3D structure with hierarchical pore size distribution (which does not collapse during electrode fabrication) + high surface area + high electrical conductivity → ultrahigh mass loading, up to 30 mg/cm² → ultrahigh areal capacitance, up to 6.44 F/cm², one of the highest value reported in literature
- High C/O ratio (44.6) → chemically inert surface → extending working voltage of supercapacitors using aqueous 6M KOH electrolyte from 1.0 to 1.2 V → 44% improving energy density
- Excellent cycling stability with ~80% capacitance retention after 20,000 cycles, even at extended working voltage

Comparison of 3DG-900 with commercial SOTA Kuraray YP-50F for high mass loading supercapacitors using 6M KOH electrolyte

Electrode Material	Electrolyte	Working Voltage	Mass Loading (mg/cm²)	Current Density (A/g)	Specific Capacitance (F/g)	Areal Capacitance (F/cm²)	Gravimetric Energy Density (Wh/kg)
NETL 3DG-900	6М КОН	1.2 V	30	1.0 A/g	182	5.48	10.1
Commercial SOTA (Kuraray YP-50F)	6М КОН	1.2 V	30	1.0 A/g	124	3.58	6.9

NETL 3DG-900 graphene improves performance over SOTA:

- Specific capacitance by ~47%
- Areal capacitance by ~53%
- Gravimetric Energy Density by ~46%

Comparison of 3DG-900 with representative carbon electrode materials for high mass loading supercapacitors, testing in two-electrode configuration in recent literature

Electrode Material	BET SSA (m²/g)	Electrolyte	Mass Loading (mg/cm²)	Current Density (A/g) or (mA/cm²)	Gravimetric Capacitance (F/g)	Areal Capacitance (F/cm²)	Maximum Gravimetric Energy Density (Wh/kg)	Reference
NETL 3DG-900	2,113	6М КОН	30	1.0 A/g	182	5.48	10.1	
Commercial SOTA (YP-50F Activated Carbon)	1,700	6М КОН	30	1.0 A/g	124	3.58	6.9	NETL
Holey graphene framework	830	6М КОН	10	1.0 A/g	250	2.5	9.2	1
MWCNT/rGO ten- bilayer hybrid	166	5M LiCI	23.7	20 mA/cm² (~0.84 A/g)	262	6.20	5.8	2
GQD assembled porous carbon	1,323	6М КОН	20.0	1.0 A/g	215	4.30	6.5	3

References: 1. Nat. Commun., 2014. 5, 4554;

2. Adv. Mater, 2017. 29, 1606679;

3. Carbon, 2020. 161, 89-96.

Recycling K₂CO₃

- During thermal treatment process:
 - A small quantity of K_2CO_3 is consumed during the activation redox reaction with CTP at above 600 °C :

 $K_2CO_3 + 2C \rightarrow 2K + 3CO \tag{1}$

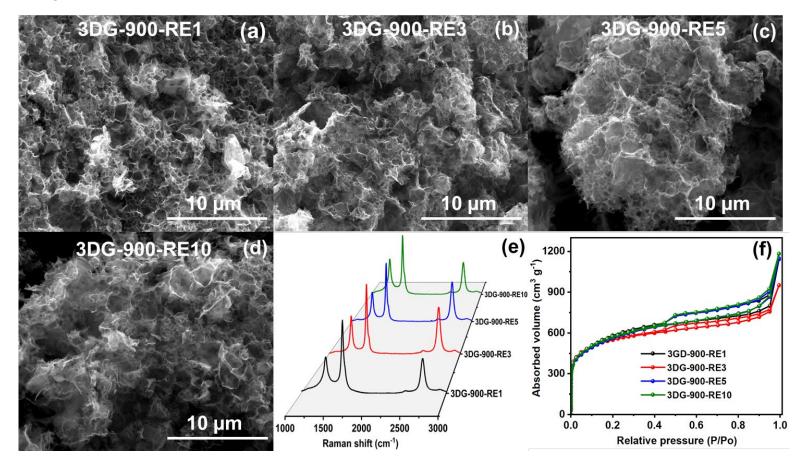
• Partial decomposition of K_2CO_3 also occurs above 800 °C

 $K_2CO_3 \rightarrow K_2O + CO_2 \tag{2}$

During washing process:

 $2K + 2H_2O \rightarrow 2KOH + H_2$ (3)

- $K_2O + H_2O \rightarrow 2KOH \tag{4}$
- During recycling process:


 $KOH + KHCO_3 \rightarrow K_2CO_3 + H_2O$ (5)

It is possible to recyle K_2CO_3 up to 95% for at least 10 cycles

Recycling K₂CO₃ for 10 cycles:

(a-d) SEM images, (e) Raman spectra, and (f) N₂ isotherms of 3DG-900-Rex using recycled K₂CO₃

Electrochemical capacitive properties of 3D graphene using recycled K₂CO₃

Electrode Material	BET SSA (m²/g)	Gravimetric Capacitance at current density of 1.0 A/g (F/g)	Energy Density (Wh/kg)
3DG-900	2,113	198	9.52
3DG-900-RE1	2,058	182	8.78
3DG-900-RE3	2,002	185	8.89
3DG-900-RE5	2,005	179	8.64
3DG-900-RE10	2,043	180	8.71
Commercial SOTA YP-50F	1,746	126	6.08

Potential Environmental Impact (Elemental Analysis of Feedstock)

Element	Analysis Method	Coal Tar Pitch Feedstock	Washing Filtrates (Intermediate Processing Steps)*	3D Graphene (Final Product)	Drinking Water Standard
Hg	AAS	< 0.250 ppm (<reporting limit)<="" td=""><td>-</td><td>-</td><td>≤2 ppb</td></reporting>	-	-	≤2 ppb
As	ICP-MS	0.583 ppm	-	-	≤10 ppb
Se	ICP-MS	2.8 ppb	-	-	≤ 50 ppb
Cd	ICP-MS	25.5 ppb	-	-	≤3ppb
Sb	ICP-MS	46.6 ppb	-	-	≤6 ppb
Pb	ICP-MS	0.11 ppm	-	-	≤15 ppb
Cl	XPS	Not detected	-	Not detected	
F	XPS	Not detected	-	Not detected	
Br	XPS	Not detected	-	Not detected	
S	EA/XPS	0.22 wt.% (EA)	-	Not detected (XPS)	250 ppm (sulfate)
Ν	EA/XPS	1.02 wt.% (EA)	-	<0.1 wt.% (XPS)	10 ppm (nitrate)

* At 100 mL of water is needed to process 1.0 g of coal tar pitch feedstock.

- Simple and scalable method to convert coal tar pitch into high-quality 3D graphene with high surface area and hierarchical pore size distribution + high electrical conductivity → supercapacitor electrode with ultrahigh mass loading (30 mg/cm²) → ultrahigh areal capacitance
- * NETL 3DG-900 graphene improves electrochemical capacitive performance over SOTA Kuraray YP-50F ~ 50%
- * Recycling K_2CO_3 for at least 10 times \rightarrow low-cost and sustainable production

This work was performed in support of the U.S. Department of Energy's (DOE) Fossil Energy and Carbon Management's Carbon Ore Processing Program and executed through the National Energy Technology Laboratory (NETL) Research & Innovation Center's Carbon Material Manufacturing.

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NationalEnergyTechnologyLaboratory

CONTACT: Viet Hung Pham VietHung.Pham@netl.doe.gov

