Molded Graphite Products Synthesized from Waste-Coal DE-FE0032141

Dwayne Morgan – Principal Investigator Touchstone Research Laboratory, Ltd.

> U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 2-4, 2024

Content

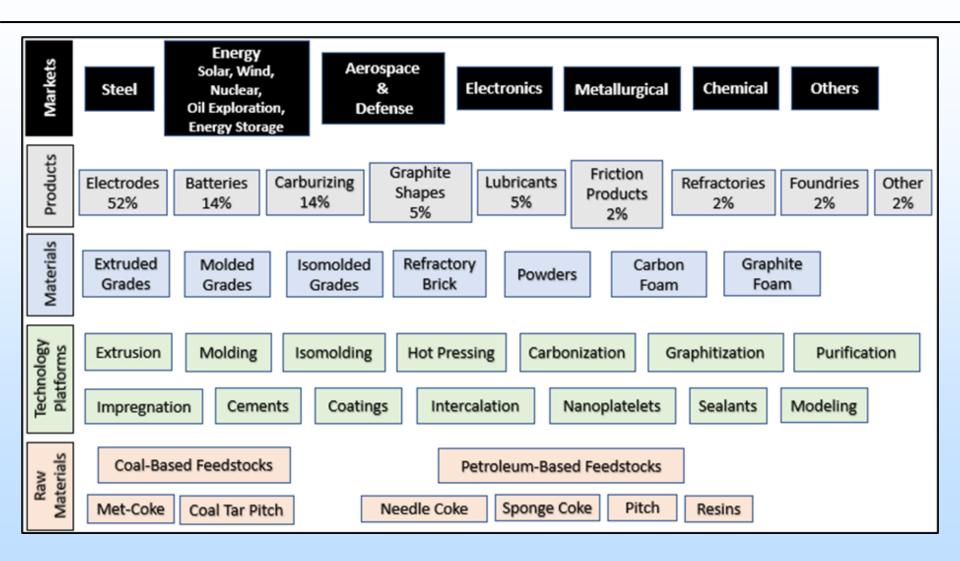
- Introduction to Touchstone
- Project Overview
- Technology Background
- Technical Approach
- Project Progress and Current Status
- Path Forward
- Outreach and Workforce Development
- Summary
- Questions & Comments

Who We Are

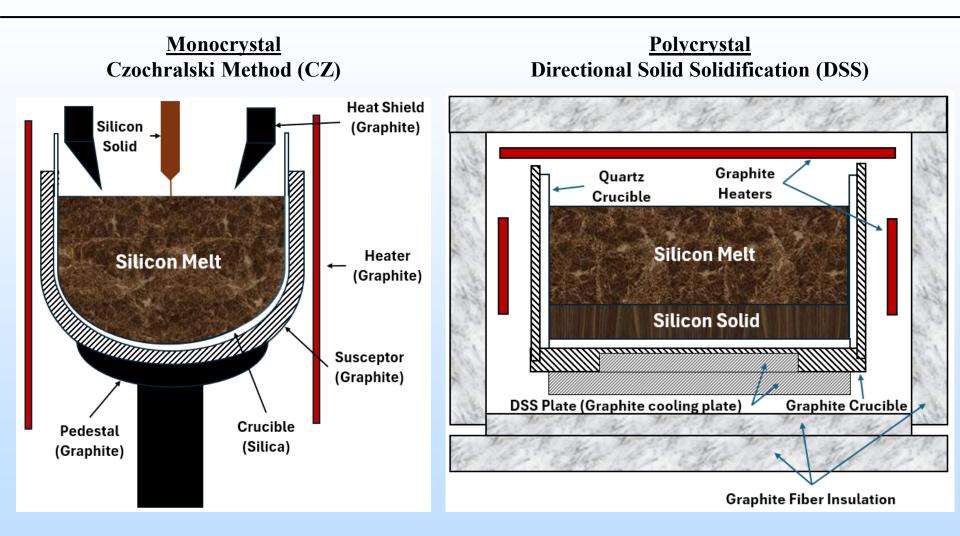
Touchstone's "Coal-to-Products" technology achievements

- High Density Carbon US-7,824,645
- Twenty-seven (27) Carbon Foam related patent awards
- Silicon Carbide US-11,186,522, 1 patent pending

Project Overview


- Funding (DOE and Cost Share)
 - Federal = \$999,990
 - Non-Federal = \$250,000
 - Total Project = \$1,249,990
- Period of Performance: 06/01/2022 02/28/2025
- Project Participants
 - Recipient: Touchstone Research Laboratory
 - Sub-recipient: Virginia Tech University

Project Objectives


- Develop high density molded graphite from domestic waste-coal feedstock
 - Impurity $\leq 1.0\%$ when cleaned via HHS
 - Moisture content $\leq 1.0\%$
- Coal feed particles $< 40 \mu m$
 - Demonstrate processed feed is suitable for molded graphite processes
 - Newly developed graphite materials should be competitive to conventional graphite synthesized from petroleum cokes

 Properties
 - o Cost
- Transition the technology from laboratory scale proof of concept (TRL-3) to pilot scale (TRL-5).

Carbon and Graphite

Silicon Production

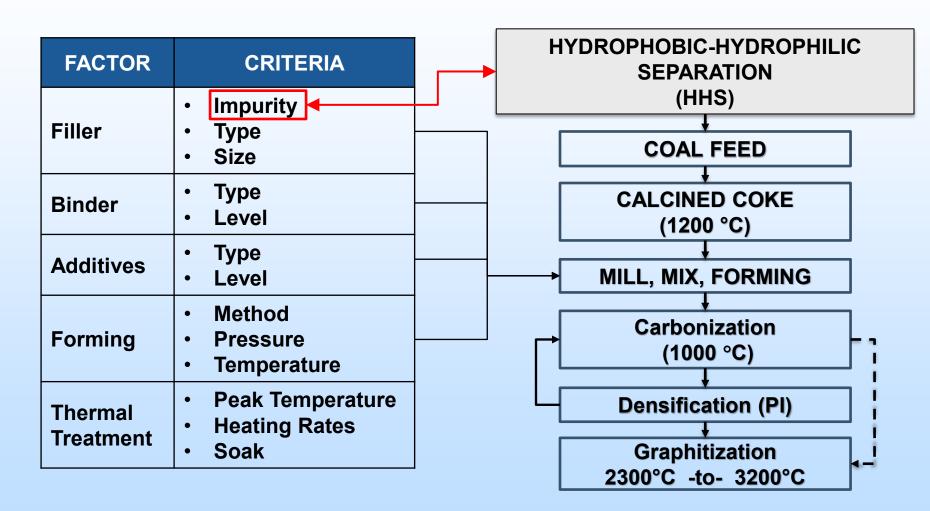
Graphite Classification

Class	ASTM D709	ASTM D7301 ^[3,4]	Other – Specialty (Average Particle Size) ^[1]
Coarse	> 4 mm	Generally, > 4mm	> 100 µm
Medium-Coarse	N/A	2 mm < grain size < 4 mm	N/A
Medium	< 4mm	1 mm < grain size < 2 mm	21 μm – 100 μm
Medium-Fine	N/A	100 μm < grain size < 1 mm	N/A
Fine	< 100 µm	50 μm < grain size < 100 μm	11 μm – 20 μm
Superfine	< 50 μm	10 μm < grain size < 50 μm	6 μm - 10 μm
Ultrafine	< 10 µm	2 μm < grain size < 10 μm	1μm - 5 μm, depending on grade
Microfine	-	Generally, < 2 µm	N/A
Angstrofine	N/A	N/A	< 1 µm

Note: **Grain**, in manufactured carbon and graphite, particle of filler material (usually coke or graphite) in the starting mix formulation. Also referred to as granular material, filler particle, or aggregate material.

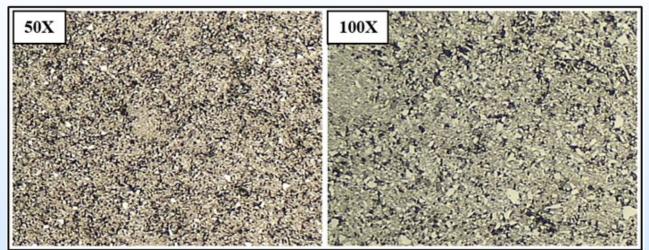
REFERENCES:

[1] Morgan, D., *Properties and Characteristics of POCO EDM Graphite*, International Symposium of Electro Machining (ISEM XIII), (May 2001) [2] ASTM D709, titled "Standard Terminology Relating to Manufactured Carbon and Graphite.

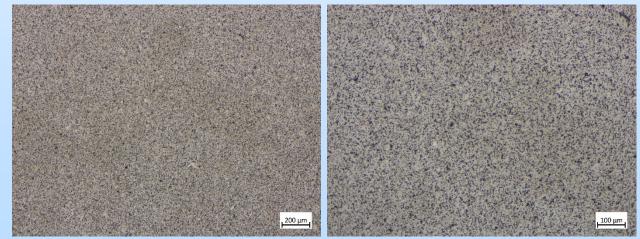

8

[2] ASTM D/09, titled "Standard Terminology Relating to Manufactured Carbon and Graphite.

[3] ASTM D4175, titled "Standard Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants".


[4] ASTM D7301, titled "Standard Specification for Nuclear Graphite Suitable for Components Subjected to Low Neutron Irradiation Dose.

Process Summary



Touchstone Prior Work

Coal-based Isomold Graphite (74 µm grain Max)

Pet coke-based Isomold Graphite (5 µm grain)

Advantages/Challenges

- Advantages:
 - HHS cleaned coal with ash ~4 wt% reported ash in final graphite product at 0.1wt% (1000 ppm), well below the ≤ 1wt% project objective.
 - Final heat treatment takes some burden off the HHS process for requiring ash impurity<1wt%.
 - Feasibility demonstrated in manufacturing molded graphite from cleaned refuse coal feed.
 - Microstructures may be engineered via grain sizing and molding methodology common to SOA synthetic graphite processes.
- Challenges
 - The graphite density was reported to be 1.52 g/cm³ that is below the stretch goal of ≥ 1.70 g/cm³ target.
 - Pitch impregnating step required to further enhance density for achieving higher density grades.

Project Scope

- Coal cleaning via Hydrophobic-Hydrophilic Separation (HHS)
 - Low, medium, and high rank waste-coal feeds
 - Dewatering method
 - Determine purity
- Define carbon mix recipe (Milling, Mixing, & Molding)
 - Particle size and distribution
 - Binder level
 - Molding pressures
- Pyrolysis & Graphitization heat treatment
- Increase from laboratory scale to pilot scale processing
- Graphite verification via materials characterization
 - Degree of graphitization
 - Ash impurity
 - Microstructure
 - Physical properties
 - Mechanical properties

Project Tasks

- **1.0 Project Management and Planning (Year 1-2)**
- 2.0 Coal Screening (Year 1-2)
 - Procure HHS cleaned coal
 - Materials characterization
- **3.0 Laboratory Scale Process Optimization (Year 1)**
 - Prepare & evaluate various filler/binder mix formations
 - Preliminary molding trial
 - Establish Carbon & Graphite heat treatment parameters
- 4.0 Graphite Pilot Processing Trials (Year 1-2)
 - Down select to best set of formulation
 - Scale batch size to kg levels
 - Produce prototypes and test
- **5.0 Commercialization (Year 2-3)**
 - Identify applications, markets, and establish potential customer base
 - Update business case
 - Develop commercialization plan for product launch

Success Criteria

- Identify waste-coal fines that yield graphite.
- Clean and recover low ash and low moisture carbon from waste-coal precursor.
- Define optimal coal rank, particle size, binder levels, and pressures for molding processes.
- Scale and validate the graphite process from laboratory to pilot level capacity.
- Manage project cost, scope, schedules, business goals, and stakeholder engagement.

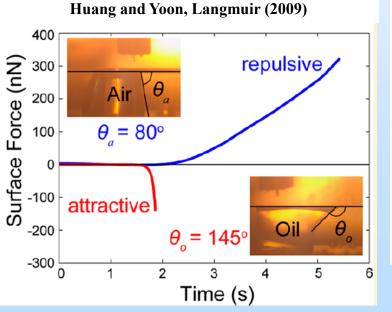
Milestones

Milestone	Description	Planned Completion	Actual Completion	Verification Method
Α	Degree of Graphitization	9/2/2022	8/30/2022	Heat Treatment XRD
В	Mix formulations characterized	12/30/2022	11/30/2022	DSC/TGA Carbon yield
С	Mix recipe defined	5/31/2023	12/30/2022	Mill, mix, mold
D	Successfully molded shapes	8/31/2023	5/19/2023	Forming trials Microstructure Density
E	Product qualified	1/30/2025		Product testing

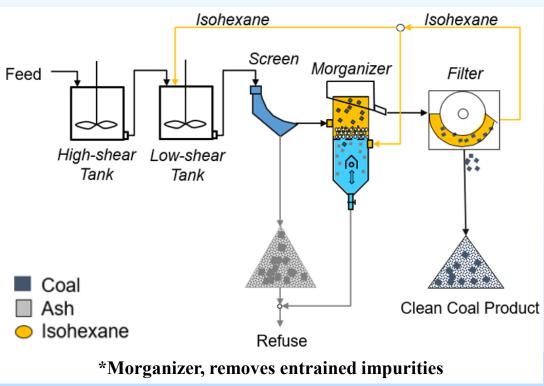
Accomplishments

- HHS bituminous impoundment coal fines:
 - Ash reduction
 - Superfine ash ~2%, 97-99% carbon recovery
 - Ultrafine ash <1%, 99% carbon recovery
 - Kilogram levels provided for product evaluation
- HHS anthracite silt pond feed:
 - Ash reduced to 2.8%, 87.2% carbon recovery
 - Investigations ongoing
- Graphite processing:
 - Discovery for waste-coal fines feedstock
 - Yield graphitizable carbons
 - Achieve low-enough ash and low-moisture content for process
 - Defined optimal coal rank, particle size, binder levels, and pressure for molding
 - Successfully scaled graphite process to pilot level

Synergy


Innovation Cycle

<u>Fundamental Research</u> Virginia Tech	<u>Applied Research</u> Touchstone Virginia Tech	<u>Product Development</u> Touchstone Virginia Tech	<u>Commercialization</u> Touchstone Coal Company
Waste Coal Recovery			
			Graphite Product
 Research institute driven Enhance Knowledge Reduce/eliminate garbage of bituminous Improves community environment Innovative HHS process research 	 Conducted to apply HHS process and solve societal environmental problem Motivated to turn HHS process into method of reclaiming carbon from mine waste Benefits society via utilizing reclaimed carbon for products. Research institute and Industry driven 	 Coal companies evaluate the commercial viability in HHS for producing high volume clean carbon Touchstone's objective is to develop mill, mix, forming, and heat treatment processes for producing high density molded graphite. Industry driven 	 Touchstone motivated in bringing new product synthesized from coal to market Coal companies motivated in implementing "efficient" waste-coal cleaning technology and identifying markets


*Touchstone participates in the Mid-APPalachian Carbon Ore, Rare Earth and Critical Minerals (MAPP-CORE) Initiative focused on the expansion and transformation of the use of coal and coal-based resources – including waste streams – to produce products of high value to the 21st Century energy and manufacturing ecosystem.

Hydrophobic-Hydrophilic Separation (HHS)

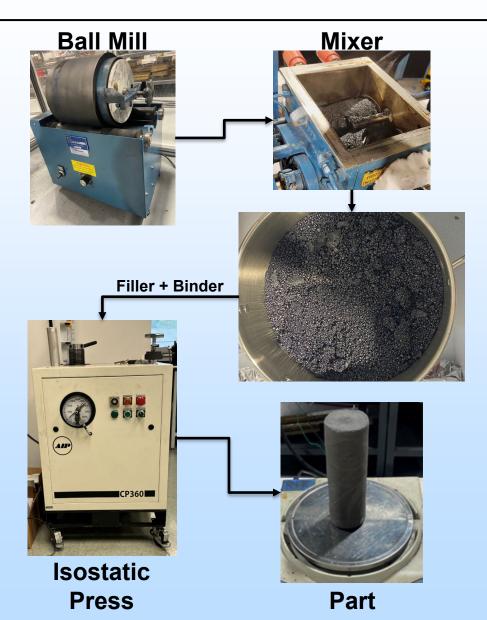
- Yoon, US Patent 9,518,241 (2016)
- Recyclable oil used in lieu of air bubbles
- Advantages of HHS
 - Oil drops increase contact angle
 - ~2x over air bubbles
 - Surface forces
 - Repulsive for flotation
 - Attractive for HHS

High-Vol Coal					
HHS Feed		HHS Feed HHS Product		Organic Recovery (%)	
D ₈₀ (μm)	Ash (%)	Ash (%)	Moisture (%)	HHS	Overall
3.6	5.89	0.80	1.98	95.23	88.00

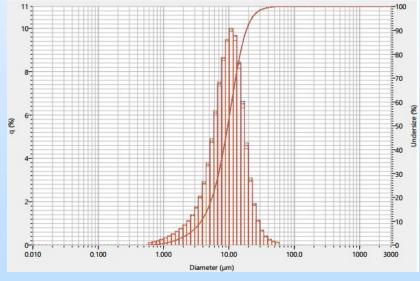
Virginia Tech HHS

Prior Work

- Bituminous coals from the Central Appalachian coal field
 - Refuse coal accumulated more than 30 years.
 - Estimated ~4 billion tons of fine coal refuse has been discarded in the U.S.
 - Typically, one-third of a fine refuse is a recoverable carbon.
 - HHS test results obtained on the bituminous impoundment coal fines are presented in lower table.

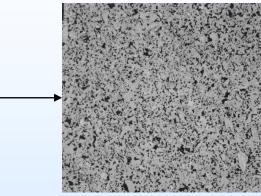

HHS Test Results Obtained on a Bituminous Impoundment Coal Fines						
	F	eed	Product		Reject	Organic Carbon
Sample	D80 (μm)	Ash (%)	Ash (%)	Moisture (%)	Ash (%)	Recovery (%)
	11.2	4.97	2.30	2.12	79.79	99.50
As- Received	11.2	4.97	1.93	2.37	52.71	97.28
	11.2	4.97	2.04	2.19	83.83	99.64
	4.9	5.69	0.91	1.50	79.26	99.06
Ground	4.9	5.69	0.72	1.40	81.31	99.20
	4.9	5.69	0.66	1.50	81.13	99.18

- Two anthracite samples from an operating mine in Pennsylvania.
 - Reduced ash content to 1.49% at a 0.97% moisture from a clean coal (anthracite).
 - Reduced the ash content to 2.8% at a 1.23% moisture.
 - Data suggests that had the tests been conducted after finer grinding, the ash contents would have been reduced to < 1% for both samples.


HHS Test Results Obtained on Anthracite samples

		HHS Product		HHS	
Sample	HHS Yield (%)	Ash (%)	Moisture (%)	Organic Carbon Recovery (%)	
Silt Pond	75.69	2.80	1.23	87.20	
Clean Coal	95.12	1.49	0.97	97.96	

Milling, Mixing, Molding (MMM)


Class	Isomold Graphite (Average Particle Size)
Medium	21 μm – 100 μm
Fine	11 μm – 20 μm
Superfine	6 µm - 10 µm
Ultrafine	1 μm - 5 μm
Angstrofine	<1 µm

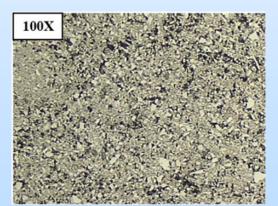
20

Isomold Graphite Microstructure 100X Magnification

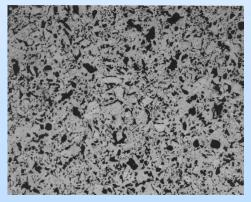
Touchstone

Superfine ^[1]

Industrial


Ultrafine^[1]

Particle size range ^[1]


Class	(μm)
Ultrafine	1-5
Superfine	6-10
Fine	11-20
Medium	21-100

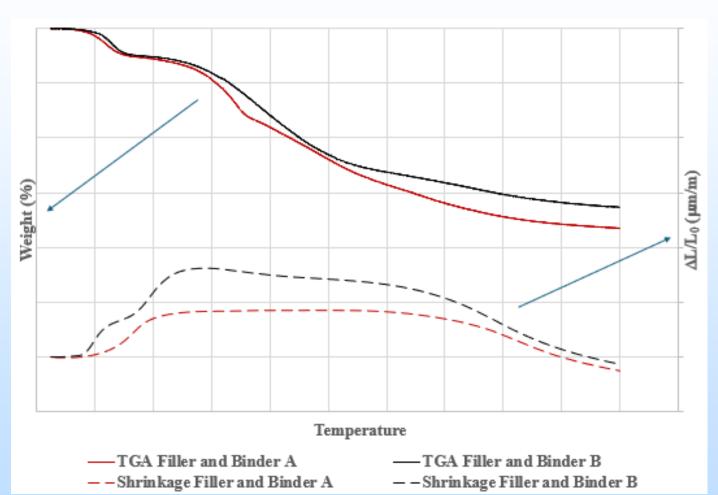
¹⁰¹ Suporfino

Superfine Refuse-Coal (HHS)

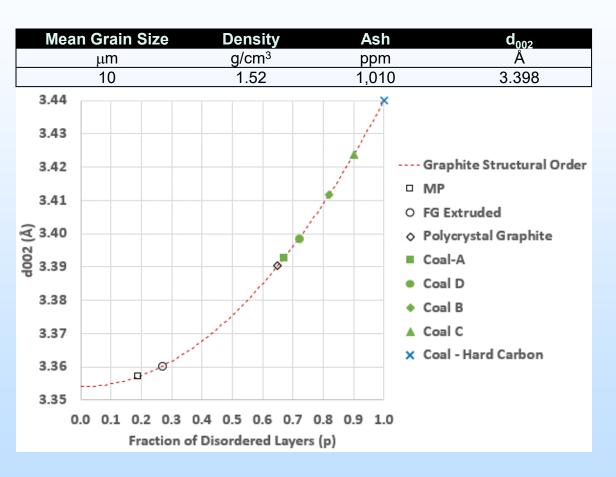
Medium Coal (no binder)

Fine ^[1]

Reference [1]: Morgan, D., Properties and Characteristics of POCO EDM Graphite, International Symposium of Electro Machining (ISEM XIII) · May 1, 2001


Carbonization

Pyrolysis


Densification

Graphite

Graphitizing Furnace

Properties

		Touchstone		Molded	Isomold	
Property	Units	<i>Ison</i> Target	nold Actual*	Fine Grain	Medium Grain	Superfine Grain
Density	g/cm ³	1.70	1.52**	1.78	1.63	1.75
Grain Size	μm	10	10	20 (43 Max)	25	10
Porosity	%	25	33	21	28	22
Ash	ppm	< 3000	1,010		< 3000	
Compressive Strength	MPa	100	TBD	50	55	96
Flexural Strength	MPa	50	TBD	30	25	56
CTE	ppm/°C	3.5	TBD	4.5	2.5	7.9
Thermal Conductivity	W/m·K	85	TBD	NR	100	95

* Superfine graphite produced from HHS cleaned refuse coal.

** Will require densification via pitch impregnation.

Path Forward

- Virginia Tech
 - Upgrading pilot facility
 - Improving unit operation to reduce the footprint
 - Explore methods of reducing capital and operational costs
 - Continue analysis/optimization efforts with cleaning coals via HHS
- Touchstone
 - Mechanical tests and product verification
 - Update business case
 - Market analysis and planning
 - Develop commercialization plan
 - Technical-Economic Analysis

Outreach

- Local community/non-profit involvements list:
 - EdVenture Group
 - Leadership Wheeling
 - Marshall Advanced Manufacturing Center
 - Pittsburgh Technology Council
 - Schrader Center/Oglebay Institute
 - St. Clairsville Chamber of Commerce
 - WV Department of Commerce
 - WV Entrepreneurship Ecosystem
 - WV Manufacturing Extension Partnership
- Regular meetings with local economic development groups
 - Regional Economic Development (RED)
 - Ohio County Development Authority (OCDA)
 - West Virginia Economic Development
 - West Virginia Small Business Development Center (WVSBDC)
- Keynote addresses by President/CEO Brian Joseph
 - Federal Laboratory Consortium Annual Meeting
 - Federal Laboratory Consortium Mid-Atlantic Annual Meeting
 - Technology and Investor Forum, Arlington, VA.
 - Emerging Minority Business Leader's Forum, West Liberty University.
 - Milliken Innovation Forum, Spartanburg, SC.
 - St. Clairsville Area Chamber of Commerce

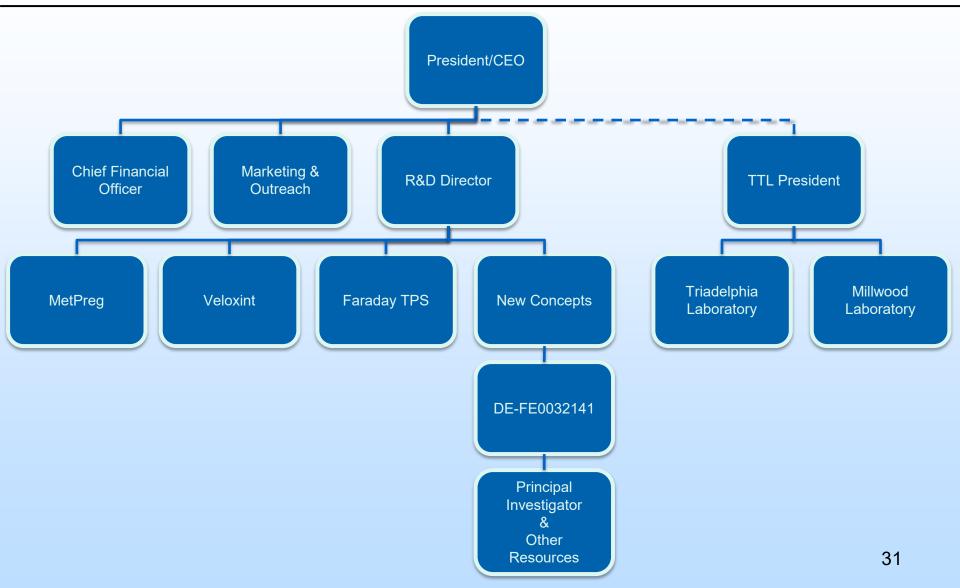
Workforce Development

Touchstone seeks to make science and engineering a more desirable career path for students in Appalachia, where it is currently under-represented.

- Job Fairs
 - Attends job fairs across the region
 - Utilizes human resources services
 - Job listings on social media
 - Indeed
 - LinkedIn
 - Facebook
- Summer Internship Program
 - 5-10 interns are accepted each year
 - Provided with shadowing opportunities on SBIR/STTR projects with high level engineers and technicians
 - Has partnered with local universities and groups, i.e., Community Foundation for the Ohio Valley (CFOV), to seek interns

Summary

- Ash impurity for superfine grain graphite exceeds expectations indicating 1,010 ppm (0.10%)
- Higher ash content may be liberated from refuse coal resulting in higher carbon recovery via HHS:
 - Ultrafine $(5\mu m)$
 - Ash impurity $\leq 1.0 \%$
 - Carbon recovery 99%
 - Superfine (10μm)
 - Ash impurity $\leq 2\%$
 - Carbon recovery 97-99%
- Laboratory and pilot processes defined, i.e., MMM, bake, and graphitization.
 - Microstructure, physical and thermophysical properties test methods defined, characterization complete.
 - Mechanical properties to be determined.
 - Pitch impregnation will be required to achieve densities >1.60 g/cm³.


Questions & Comments

Dwayne Morgan Phone: 304-547-5800, ext. 231 Email: drm@trl.com

Appendix

Touchstone Research Laboratory Organizational Chart

Gantt Chart

Task Name	2023 2024 2025
	Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Start Project	▲ 6/1
1.0 Project Management	• • • • • • • • • • • • • • • • • • •
2.0 Coal Screening - Degree of Graphitization	
2.1 Coal Procurement	TR&D,VT,Coal Co.
2.2 Thermal Treatment	· • • • • • • • • • • • • • • • • • • •
2.3 Degree of Graphitization (XRD)	TR&D
2.4 Milestone A - Low, Med, High Rank Coal Feedstock Selections	≰ 9/2
3.0 Laboratory Scale Process Optimzation	
3.1 HHS Batch and Continuous Tests	VT,Coal Co.
3.2 Particle Size Classification (Sizing)	TR&D,Coal Co.
3.3 Mix & Pressure Molding	TR&D
3.4 Milestone B - Bench Scale Mix Formulations Characterized	 ◆ 12/30
3.5 Thermal Treatment	
3.6 Materials Characterization	TR&D
3.7 Milestone C - Mix Recipe Defined	₹ 5/31
4.0 Graphite Pilot Processing Trials	
4.1 Coal Cleaning & Drying HHS	VT,Coal Co.
4.2 Particle Sizing	TR&D,Coal Co.
4.3 Mix and Pressure Molding	TR&D
4.4 Heat Treatment, Bake and Graphitization	TR&D
4.5 Milestone D - Green Billet Molded Shape and Density Verified	♦ 8/31
4.6 Year 1 Project Extension	
4.7 Graphite Production & Qualification	
4.8 Batch Qualification (Test & Verification)	TR&D
4.9 Voice of the Customer	
4.10 Commercialization Plan for Product Launch	
4.11 Milestone E - Process Defined-Product Qualified	↓ 1/2
5.0 Commercialization]
5.1 Market Analysis & Planning	TR&D,CU
5.3 Technical-Economic Analysis	TR&D,VT,Coal Co.
End of Project	3 2/28