Low-Temperature Production of Battery Grade Graphite from Coal with Recovery and Reuse of the Catalyst

Ki-Joong Kim Research Scientist, NETL Support Contractor

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Ki-Joong Kim^{1,2}; Viet Hung Pham^{1,2}; Yuan Gao^{1,2}; Ngoc Tien Huynh^{1,2}; YunYang Lee^{1,2}; Congjun Wang¹; Christopher Matranga¹

¹National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA

²NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA

Outline

NETL's Catalytic Graphitization Process

- * Catalytic Conversion of Coal to Graphite
 - Optimization of Catalytic Graphitization
 - $_{\odot}$ Catalytic Conversion of Different Coal Ranks
- Improving Material Quality to Produce Battery Grade Graphite
 - $_{\odot}$ General Requirements for Battery Grade Graphite
 - Remove Mineral Matter & Fe Catalyst
 - o Physical Processing
- * Recovery/Recycling Fe Catalyst & HCI Recycling
- Second Analysis
- Summary

Outline

NETL's Catalytic Graphitization Process

* Catalytic Conversion of Coal to Graphite

- Optimization of Catalytic Graphitization
- $_{\odot}$ Catalytic Conversion of Different Coal Ranks

Improving Material Quality to Produce Battery Grade Graphite

- General Requirements for Battery Grade Graphite
- Remove Mineral Matter & Fe Catalyst
- Physical Processing
- * Recovery/Recycling Fe Catalyst & HCl Recycling
- Elemental Analysis
- Summary

IATIONAL

NETL's Catalytic Graphitization Process

Optimization of Catalytic Graphitization

NATIONAL ENERGY

Catalytic Conversion of Different Coal Ranks

https://www.uky.edu/KGS/coal/coal-rank.php

NATIONAL ENERGY

TECHNOLOGY LABORATORY

NATIONAL ENERGY TECHNOLOGY LABORATORY

Catalytic Conversion of Different Coal Ranks

Coal rank (ASTM rank)	Anthracite (an)	Bituminous (hvAb)	Sub-Bituminous (subB)		Sub-Bituminous (subC)		Lignite (ligA)		Commercial Graphite	
<u>Sample</u>	DECS-21	DECS-32	DECS-9	DECS-26	DECS-8	<u>DECS-39</u>	DECS-11	DECS-25	<u>Natural</u> graphite	<u>Artificial</u> graphite
Seam	Lykens Valley #2	Stockton- Lewiston	Dietz	Wyodak	Smith-Roland	Anderson/ Canyon	Beulah	Pust	MSE	MTL correction
County, State	Columbia, PA	Kanawha, WV	Bighorn, MT	Campbell, WY	Campbell, WY	Campbell, WY	Mercer, ND	Richland, MT	supplies	MII Corporation
Char Yield (%)	92.3	70.3	43.8	39.4	38.9	39.5	38.1	36.0	-	-
Ash (wt%)ª	3.02	4.11	0.415	0.095	0.67	0.888	1.67	3.86	<0.1	0.53
DG (%) [⊳]	83	81	91	96	95	91	91	88	95	93
d ₍₀₀₂₎ (nm) ^b	0.33683	0.33712	0.33620	0.33577	0.33585	0.33622	0.33622	0.336413	0.33581	0.33604
Lc (nm) ^b	47	39	46	48	44	47	43	45	45	41
La (nm) ^b	25	47	77	84	33	73	53	58	85	39
Nс (-) ^ь	140	114	136	143	132	139	128	133	135	122
2H/3R (%) ^b	62/38	57/43	62/38	82/18	64/36	70/30	51/49	57/43	81/18	81/19
S _{BET} (m²/g) ^c	9.48	24.14	5.34	5.40	7.50	5.60	13.54	7.90	2.26	2.48

NETL's Catalytic Graphitization Process

Catalytic Conversion of Coal to Graphite
Optimization of Catalytic Graphitization
Catalytic Conversion of Different Coal Ranks

Improving Material Quality to Produce Battery Grade Graphite

- General Requirements for Battery Grade Graphite
- $_{\odot}$ Remove Mineral Matter & Fe Catalyst
- o Physical Processing

Recovery/Recycling Fe Catalyst & HCI Recycling

Elemental Analysis

Summary

General Requirements for Battery-Grade Graphite

irreversible capacity

Natural graphite after physical processing

NATIONAL ENERGY TECHNOLOGY LABORATORY

Physical Processing

	Commercial Natural Graphite	NETL Graphite Original	NETL Graphite Large (80 wt.%)	NETL Graphite Small (20 wt.%)
Ash (wt.%)	0.1	0.095	~0	0.46
Surface area (m²/g)	1.38	5.4	3.4	23.0
DG%	95	96	96	93

LIBs Testing Performance

NETL's Catalytic Graphitization Process

* Catalytic Conversion of Coal to Graphite

- Optimization of Catalytic Graphitization
- Catalytic Conversion of Different Coal Ranks

Improving Material Quality to Produce Battery Grade Graphite

- General Requirements for Battery Grade Graphite
- Remove Mineral Matter & Fe Catalyst
- Physical Processing

Recovery/Recycling Fe Catalyst & HCl Recycling

- Elemental Analysis
- Summary

Recovery/Recycling Fe Catalyst & HCl Recycling

Recovery/Recycling Fe Component

Recovery/Recycling Fe Catalyst & HCl Recycling

Recovery/Recycling Fe Component

Recovery/Recycling Fe Catalyst & HCl Recycling

LIBs Testing Performance

U.S. DEPARTMENT OF

Graphite	NETL Graphite by Fresh Catalyst	NETL Graphite by Recycled Fe ₂ O ₃ and HCl	
DG%	96	94	
Ash (wt.%)	<0.095	~0	
Surface area (m²/g)	5.4	8.4	
First discharge capacity at 0.1 C (mAh/g)	340	351	
First charge capacity at 0.1 C (mAh/g)	415	476	
Initial Coulombic efficiency (%)	82	74	
50 th discharge at 0.2C (mAg/h)	357	355	
50 th CE (%)	99.8	99.8	

Outline

NETL's Catalytic Graphitization Process

- * Catalytic Conversion of Coal to Graphite
 - Optimization of Catalytic Graphitization
 - Catalytic Conversion of Different Coal Ranks

Improving Material Quality to Produce Battery Grade Graphite

- General Requirements for Battery Grade Graphite
- Remove Mineral Matter & Fe Catalyst
- Physical Processing
- Recovery/Recycling Fe Catalyst & HCI Recycling

Elemental Analysis

Summary

Elemental Analysis

NATIONAL ENERGY TECHNOLOGY LABORATORY

Elements of Interest ("Bad actors")

Outline

NETL's Catalytic Graphitization Process

- * Catalytic Conversion of Coal to Graphite
 - Optimization of Catalytic Graphitization
 - Catalytic Conversion of Different Coal Ranks

Improving Material Quality to Produce Battery Grade Graphite

- General Requirements for Battery Grade Graphite
- Remove Mineral Matter & Fe Catalyst
- o Physical Processing
- Recovery/Recycling Fe Catalyst & HCI Recycling
- Elemental Analysis
- Summary

- Summary
 - Investigated a series of experiments for the catalytic graphitization process with coal, where the size of Fe particles, the ratio of catalyst to coal sample, and graphitization temperatures/times were varied to optimize the synthetic process of coal-derived graphite, as well as different coal ranks.
 - Successfully demonstrated catalytic graphitization of coal with degree of graphitization of >95% and highly crystalline graphite powder, comparable or higher than numerous commercial battery-grade graphite on the market.
 - Investigated a washing procedure and physical processing that additionally improves the quality of graphite.
 - Demonstrated the recycling process of Fe component and HCl reagent and reused them as sustainable resources in graphitization process.
 - Fabricated LIBs with NETL's best graphite as an anode electrode material, and the testing electrochemical performance was benchmarked against commercial battery-grade graphite.

This work was performed in support of the U.S. Department of Energy's (DOE) Fossil Energy and Carbon Management's Carbon Ore Processing Program and executed through the National Energy Technology Laboratory (NETL) Research & Innovation Center's Carbon Material Manufacturing.

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NationalEnergyTechnologyLaboratory

CONTACT: Ki-Joong Kim/Viet Hung Pham/Congjun Wang/Christopher Matranga <u>Ki-joong.kim@netl.doe.gov</u>

412.386.4526

Thank you!

