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These minerals are
critical in the short
term

2023 Critical Material
Assessment, DOE
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These minerals are
critical in the
medium term

2023 Critical Material
Assessment, DOE
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IMEEEERUEERENS
to think about the US
Critical Materials
Dilemma

1. Us vs. Them




The rules of
competition don’t
apply to monopolies

Monopolies cease innovation and
grow by acquisition.

Monopolies manipulate the supply
chains to maintain the monopoly.

Incremental domestic improvements

in conventional processes will be
offshored.

Investment booms and busts
primarily serve to solidify the
monopoly.

VISUALIZING

IN CLEAN ENERGY METALS

Renewable sources of energy are expected to replace fossil
fuels in the next decades, as the world's economies try to
reduce carbon emissions and mitigate climate change.
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World demand for lithium is forecast to

more than double between 2020 and 2023

as global electric vehicle uptake rises.

This graphic based on data from the International Energy
Agency illustrates where the extraction and processing of
key metals for the green revolution take place, and how

China is leading the process.

52% 40%
Other China

44%
Other

& 4%

23% 65%
Other China

= 4%
13% 16%

©C® ®

1M1%
13%

22%
Chile @ @

13%

The Biden administration has
targeted rare earths among

domestic supply chain priorities.

Source: Visual Capitalist using IEA data
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Of the 255,000 Congolese mining
for cobalt, 40,000 are children.
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In less than 20 yrs
we'll need 5-50x
our current CM

supplies

IEA 2040
Demand
Scenarios
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3. We're in this
together
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If We FOCUS on an
Adversary’s Approach,
We’re Playing the
Wrong Game

For the World to Decarbonize, we
need Critical Mineral Abundance

We Must Innovate Ways to Gain Public
Acceptance and Approval

Leading the Way looks like:
Green Mining Principles
Community Benefits
Driving Down the Cost Curve
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Give up, let
markets fix it
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Monopoly persist: °C and no slow route either
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In less than 20 yrs
we'll need 5-50x
our current CM

supplies
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The Clean Energy
Future Requires
jumping to lower
grades

Cumulative Ore Tonnage
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To support the U.S. transition to a carbon-free economy and a domestic clean energy manufacturing industry by
leading the federal government’'s efforts to:

1. Characterize and assess domestic critical mineral and carbon ore resourses from fossil energy-related
byproducts and related resources;

2. Develop advanced resource extraction, processing, and extractive metallurgical technologies: and

3. Evaluate the co-production potential of critical minerals and carbon ore for high-value products.

 NETL is the DOE’s Applied Energy Research
NATI 0 N AI. Lab folr Fossil Energy arl1d Carbony
Management
 NETL is also the heir of the US Bureau of
EECB:gE g)'ll'-gRGYY Mines R&D operations following closure in
1996.




The 1996 Division of functions of the USBM
to USGS and to DOE

CLVAAPLLLL L ALl SDLLCiLl)l 1LCLIICAlEl LY CALACARPLYS LOFL LIJ..I'I.J.E CLLULYIIL LBl UEP VCLLLEMGL

30, 1996: Provided further; That the authority granted to the United
States Bureau of Mines to conduct mineral surveys and to determine
mineral values by section 603 of Public Law 94-579 is hereby
transferred to, and vested in, the Director of the United States

(Government
organization.
43 USC 1782

note.

110 STAT. 1321-165

Geological Survey.

PUBLIC LAW 104-134—APR. 26, 1996

UL RN [ L WL W R \_p'UL.LJ. L LLEY s ALl NP FY LLiaman i l_I.LrI.J (%= ) L B NEAN LWL L L AL

tlus Act: Prauzded That there hereby are transferred to, and vested
in, the Secretarj,r of Energy: (1) the functions pertammg to the
pmmotion of health and safety in mines and the mineral industry
through research vested by law in the Secretary of the Interior
or the United States Bureau of Mines and performed in fiscal
year 1995 by the United States Bureau of Mines at its Pittsburgh
Research Center in Pennsylvania, and at its Spokane Research
Center in Washington; (2) the functions pertaining to the conduct
of inquiries, technological investigations and research concerning
the extraction, processing, use and disposal of mineral substances
vested by law in the Secretary of the Interior or the United States
Bureau of Mines and performed in fiscal year 1995 by the United
States Bureau of Mines under the minerals and materials science
programs at its Pittsburgh Research Center in Pennsylvania, and
at its Albany Research Center in Oregon; and (3) the functions



NETL is the government operated, government owned laboratory for:

“research on mineral extraction, processing, use, and conservation of America’s
mineral resources”
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Th € in d U St ry * Robust integrated markets and supply chains
" can be built from CM sources tied to US
Wwe need WIH energy production.

be built from

h | N * The energy sector will benefit from solutions
t € d - St ry that target their waste materials and
we h ave contribute to a clean energy future.

NATIONAL

TL TECHNOLOGY
LABORATORY




The US
should seek
to build new
partners that

benefit from
successful
solutions

* Major multinational miners benefit from the

status quo

* Question the profit motive to solve the CM

supply chain issues the US faces.

NATIONAL

TECHNOLOGY
LABORATORY
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* Get Better, Cheaper, Quicker

e Resource Extraction become Resource

Domestic Manufacturing
Abundance LCOE (CHF/kWh)

Requires
technologies that ° K
can hop on the 01 -

learning curve
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Domestic Abundance , ,
* Bake-In community benefits

Requires * Minimize Waste

community * Clean up Legacy Harms
permission

* Life Cycle Assessments
* Environmental responsibility
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NETL Critical Minerals Research

Transformative Technology
Focused on American Advantages

Legacy of :
Grow into the | Fossil Energy
Future Leadership

Unrealized
Environmental
Benefits
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CM Resource Data
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Recovery from Ash and AMD ﬁ?ﬁgﬁ%ﬁém
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Mine Drainage Treatment Systems
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Novel Fiber Optic Sensors for Critical Minerals
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CM Task 7: CM Recovery from Mineral Carbonation (CDR) waste streams  |[N=|N/TIONAL
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Platinum Group Metal (PGM) potential in Twin Sisters olivine (TSO) LABORATORY
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Next Steps:
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N ETI_,S ViSiOﬂ fOr * Tap Unmir\eable'l\/l.ineral WeaI’Fh

* Improving Prediction and Targeting

th e I\/l | Nes Of th e * R&D for Bespoke Feedstock Leaching
* Subsurface Engineering
Future

e R&D for Subsurface Containerization/ Env. Protection
* Enable Closed-System Leaching, Recovery, and Disposal

» Surface-based Processing L

* Recovery mg/kg mg/kg  mg/kg

Bakken Bedwell 3,000 13,000 1,000

¢ Wate r Re use Marcellus  Armsfrong® 20,000 <100 <500

Dunham* 90,000 5,000
MIP 20,000 30,000 <500

An R&D Thrust to unlock

America’s hidden mineral
resources
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