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Process for Critical Mineral Recovery from Industrial Byproducts
1) Identification

Locating potentially recoverable waste material (previously disposed or currently generated)
Analysis of the composition of the material for critical minerals and the host material

2) Beneficiation
Removal of impurities and pre-treatment that enhances the recoverability and/or purity of the 
minerals

3) Leaching/Extraction
 Liberation of critical minerals from the host material into solution 

4) Concentration/Purification
Removal or reduction of major constituents to concentrated mixed REEs

5) Separation
Separation of critical minerals into oxides or other compounds

6) Residuals Management
The waste likely contains a few weight % of critical minerals and the remaining mass and by-
products must be beneficiated, disposed of, or recycled back into the process (reagents) 

Critical Minerals Recovery
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Modeling

Step 1
REEs extraction

Step 2
Sorbent development

Step 3
REE concentration

Step 4
REE separations
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Biosurfactant

Bioeng. Biotech. 2017, 115, 796-815.

Wound-Healing

Burns 2006, 32, 24-34.

Antibacterial

Front. Cell Infect. Microbiol. 2017, 7, 1.

Anticancer Biofilm Inhibition
Microbial Cell Fact. 2017, 16 225.

Rhamnolipids
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Biosurfactants - Problem
Mixtures of Mono-Rhamnolipids Identified from P. aeruginosa ATCC 9027

Rha-C6-C10 Rha-C6-C12:1 Rha-C10-C8 Rha-C8-C12:1 Rha-C8-C12

Rha-C8-C8 Rha-C8-C10:1 Rha-C8-C10 Rha-C10-C10:1 Rha-C10-C10

Rha-C10-C6 Rha-C12:1-C8 Rha-C12-C8Rha-C10:1-C8 Rha-C10
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~75-85%

Variability: Rhamnolipid-
producing cultures grown 
under identical conditions

Isolation & Purification: 
Crude Rhamnolipids



Selective Synthesis - Rhamnolipids and Beyond

biosynthesis

- Isolate from mixture
- Genetic/fermentation 

optimization
- Limited chain
- Limited saccharide

chemosynthesis

- Chain length/functionality 
variation

- Saccharide variation
- Multi/Combination congener
- Chirality selection
- mg → kg
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Project Conceptualization
Glycolipids Bind Metals

M+n

M+n

Prior R&D work validation:
Rhamnolipids exhibited selectivity for REEs



Project Conceptualization
Glycolipids Bind Metals

M+n

M+n

Prior R&D work validation:

- Hydrophobic Attachment (WSU)
- REE separations (WSU)
- Engineering Expertise

Metal-binding moiety 

Hydrophobic tail



Project Conceptualization Overarching Project Goals:

• Synthesis of novel separation 
ligands (Glycosurf)

• Modeling of REE-ligand binding
     (Glycosurf)

• Ligand-bound resin production 
and optimization (WSU)

• Selective extraction testing 
using REO model concentrates 
(WSU)



Technical Objective 1 - Compound Library

Tailored synthetic glycolipids

Monosaccharides
Disaccharides
Trisaccharide

Tailored DTPA ligands

• Synthesized 2-EtHex DTPA
• 3 additional novel structures 

being synthesized in Phase II
Chain length: n = 4 - 

24
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Glycolipid Library
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Ligand-dependent binding pocket

Technical Objective 2 - Modelling for Outcomes



Ni2+

Coordination = 5
Avg M-O bond (A) = 2.12

Binding E (kJ/mol) = -2082

Zn2+

Coordination = 6
Avg M-O bond (A) = 2.19

Binding E (kJ/mol) = -2062

Pb2+

Coordination = 4
Avg M-O bond (A) = 2.54

Binding E (kJ/mol) = -1537

La3+

Coordination = 7
Avg M-O bond (A) = 2.56

Binding E (kJ/mol) = -2694

Modelling for Outcomes



Modelling for Outcomes

Jessica Johnston, PhD



Expansion on Motif

Ligand-dependent binding pocket

Proposed rhamnolipid structures



2-hydroxy 3-hydroxy 4-hydroxy

Modelling for Outcomes



DTPA

Sep. & Pur. Tech.  2021, 258, 118061

Known Chelator

Hydrophobic Modification



DTPA - Expanded Motif 

5-10g

1-2 kg

modified side-chains modified side-chainsredacted



Objective 5 -  Capacity Expansion
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Process for Critical Mineral Recovery from Industrial Byproducts
1) Identification

Locating potentially recoverable waste material (previously disposed or currently generated)
Analysis of the composition of the material for critical minerals and the host material

2) Beneficiation
Removal of impurities and pre-treatment that enhances the recoverability and/or purity of the 
minerals

3) Leaching/Extraction
 Liberation of critical minerals from the host material into solution 

4) Concentration/Purification
Removal or reduction of major constituents to concentrated mixed REEs

5) Separation
Separation of critical minerals into oxides or other compounds

6) Residuals Management
The waste likely contains a few weight % of critical minerals and the remaining mass and by-
products must be beneficiated, disposed of, or recycled back into the process (reagents) 

Critical Minerals Recovery



Step 1 – Leaching/extraction

Image source: Jessica Hovey



Step 1 – Leaching/extraction
 Goal- maximize critical mineral release to aqueous solution while minimizing 

non-valuable metal release (Fe, Al, etc.)
 Acid leaching or roast and leach – various acids and ash results (75W/25E ash)
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Step 2 – Sorbent design and synthesis

 Commercial ligands
 Example: P-P'-di(ethylhexyl)methanediphosphonic acid (DIPEX)

 Synthesized ligands

 Modified diethylenetriaminepentaacetic acid (DTPA)

 functionalized with hydrophobic groups

 Bis(ethylhexylamido) DTTA

 EHNH2 DTTA

 Glycolipids (>26 - numerous types)
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 Styrene-divinylbenzene 
 Organosilica

 ~600 m2/g surface area

Solid Supports

www.absmaterials.com



Organosilica

  

 
      

    
    

    
   



Ligand loading Removing solvent Media
1.Hovey, J. L.; Dardona, M.; Allen, M. J.; Dittrich, T. M. Sorption of Rare-Earth Elements onto a Ligand-Associated Media for pH-Dependent Extraction and Recovery of Critical Materials. Sep. Purif. Technol. 2021, 258, 118061.

www.absmaterials.com
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Objective 4: Lab-scale testing (>90% ISHP REOs)

Obj. 4a: Batch experiments (UCLA)
 5 ppm of 16 REEs (80ppm TREE) 

 pH dependency 

 Selectivity
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Media with moderate to good selectivity/capacity towards REE



Media with low selectivity/capacity towards REE



pH-dependent binding (glycolipids)
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Obj. 4b: Column separations



Obj. 4b: Column Separations

 Solution chemistry
 Loading cycle

 7 ppm of 16 REEs (112 ppm TREE)
 7 pm Th
 pH = 3.0

 Release cycle 
 REE-free acid
 pH 0.5 and 0.03

Column parameters
 10 cm length and 1 cm diameter
 4.8 gram media
 4.4 ml pore volume



Obj. 4b: Column Separations (from concentrates)

 REEs + Th solution pumped through column
Modified DTPA media
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Obj. 4b: Column separations
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 All REEs but Sc release in the first few pore volumes of strip
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Sequential column separations



Enriched Baskets
 Influent solution had 5.8% of each element
 Basket 1 is 90% enriched in Sc (78% of total)
 Basket 2 is 88% enriched in Th (81% of total)
 Basket 3 is 56% enriched in La (21% of total)



Modified DTPA and REEs
 Two REE-DTPA complexes possible (34 total reactions)
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REE+3 + DTPA−5  →  REE_DTPA−2

REE+3 + H +  DTPA−5  →  REE_HDTPA−1

Hydrophobic chains

Complexation constant
Log K

La 19.49
Ce 20.43
Pr 21.1
Nd 21.62
Y 22.05
Sm 22.35
Eu 22.39
Lu 22.46
Gd 22.39
Yb 22.64
Tb 22.72
Tm 22.73
Er 22.75
Ho 22.79
Dy 22.83
Sc 23.9

Source: NIST V46.8

𝐾𝐾 =
[𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 −2]

[𝐺𝐺𝐺𝐺+3] [𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−5]



La+3 + DTPA-5 → La-DTPA-2

Ce+3 + DTPA-5 → Ce-DTPA-2

Pr+3 + DTPA-5 → Pr-DTPA-2

Nd+3 + DTPA-5 → Nd-DTPA-2

Y+3 + DTPA-5 → Y-DTPA-2

Sm+3 + DTPA-5 → Sm-DTPA-2

Eu+3 + DTPA-5 → Eu-DTPA-2

Lu+3 + DTPA-5 → Lu-DTPA-2

Gd+3 + DTPA-5 → Gd-DTPA-2

Yb+3 + DTPA-5 → Yb-DTPA-2

Tb+3 + DTPA-5 → Tb-DTPA-2

Tm+3 + DTPA-5 → Tm-DTPA-2

Er+3 + DTPA-5 → Er-DTPA-2

Ho+3 + DTPA-5 → Ho-DTPA-2

Dy+3 + DTPA-5 → Dy-DTPA-2

Sc+3 + DTPA-5 → Sc-DTPA-2

DTPA and REEs (34 total reactions)
Complexation constant

log K
La 19.49
Ce 20.43
Pr 21.1
Nd 21.62
Y 22.05
Sm 22.35
Eu 22.39
Lu 22.46
Gd 22.39
Yb 22.64
Tb 22.72
Tm 22.73
Er 22.75
Ho 22.79
Dy 22.83
Sc 23.9

REE+3 + DTPA−5  →  REE_DTPA−2

𝐾𝐾 =
[𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−2]

[𝐺𝐺𝐺𝐺+3] [𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−5]

REE+3 + H + + DTPA−5  →  REE_HDTPA−1

𝐾𝐾 =
[𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−1]

[𝐺𝐺𝐺𝐺+3] [𝐻𝐻+] [𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−5]



Batch experiment model

PHREEQC model (NIST 46.8):
  La, Ce, Pr, and Nd are showing poor fit



Batch experiment model

PHREEQC model calibration:
 The complexation constants of 4 of the 16 modeled elements 

were adjusted to better match the model



Column modeling

PHREEQC calibrated model:

Experimental data 

REE+3 + DTPA−5  →  REE − DTPA−2

Calibrated Model 



Rhamnolipid C14C14 column separation
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Sorbent Characterization

 Tracing ligand penetration in solid 

DTPA with fluorescent moiety

 Fixed in epoxy-polished

 Ligand uniformly diffused



Sorbent Characterization - Argonne National Laboratory 



Sorbent Characterization - Argonne National Laboratory



Sorbent Characterization - Argonne National Laboratory



Sorbent Characterization - Argonne National Laboratory



Step 5: Leach residues in concrete

Concrete Mix Proportions and Slumps
Batch # Cement 

(kg)
Sand 
(kg)

Gravel 
(kg)

Fly Ash 
(kg)

Water
(kg) 

Slump
(in)

Note

1 1.92 kg 7.08 kg 4.25 kg 0.0 kg 1.46 kg 4.25 in No fly ash (Base mix)

2 1.53 kg 7.08 kg 4.25 kg 0.38 kg 1.46 kg 7.0 in Raw fly ash as 
cementitious material 
(20% of cement)

3 1.53 kg 7.08 kg 4.25 kg 0.38 kg 1.56 kg 1.25 in Processed ash as 
cementitious material 
(20% of cement)

4 1.92 kg 6.37 kg 4.25 kg 0.71 kg 1.56 kg 0.0 in Processed ash as fine 
aggregate (10% of 
sand)

Before After

Above: Coal fly ash before 
and after acid extraction

Above: Concrete mix ingredients (sand, 
leached CFA, cement, and gravel)

• Concrete cylinders were made to 
test the usability and characteristics 
of leached CFA in low-performance 
concretes

• Concrete mixes and cylinders made 
according to ASTM C192

• Four batches of cylinders:
• Control mix (sand, cement, and 

gravel)
• Raw fly ash (replacing 20% of 

cement in control mix)
• Leached fly ash (replacing 20% 

of cement in control mix)
• Leached fly ash (replacing 10% 

of sand in control mix)



Concrete Core Testing

• Tested the maximum 
compressive strength after a 
28-day moist cure according 
to ASTM C39

• The mix with raw fly ash 
broke at 80% of the control 
mix max PSI

• The two leached fly ash 
mixes broke around  41% of 
the control mix max PSI

• The mixes with leached CFA 
absorbed more water and 
were drier, evidenced by 
smaller slumps, even though 
the leached CFA has up to 
15% moisture by weight

4.25 7.0 1.25 0.0

Slump (in)

Batch 2Batch 1 Batch 3 Batch 4

Concrete cores after curing along with the measured slump

Concrete cores after compressive failure
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DOE STTR Phase II (WSU Update))
 Objective 3: Synthesis of sorbent media library

 Use ligands from Obj. 1 to make new sorbent materials
 COMPLETE (26 media synthesized)

 Objective 4: Lab-scale testing and column separation
 Test 26 media for performance and down-select
 COMPLETE (3 media selected for scale-up)

 Objective 5: REE-capture component scale-up
 Purchased equipment and initial set-up complete. 
 NEARLY COMPLETE (equipment has been installed - final testing)

 Objective 6: Pre-pilot scale prototype construction
 Build prototype
 IN PROCESS (system design and component selection nearly complete)



Thank You
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