Rare Earth Metals Recycling by Hydrogen Processing

Project Number DE-SC0021544

Maoqi Mark Feng Polykala Technologies LLC

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 2-4, 2024

Project Overview

- DOE SBIR Phase 2 Project Funding \$1.15million
- Project Duration: 04/03/2023 to 04/02/2025
- Project Participants: Dr. Junhua Jiang (Savannah River National Lab), Dr. Andrew Sexton (Trimeric Corporation), Prof. Maohong Fan (University of Wyoming), Prof. Sandeep Kumar (Old Dominion University).
- > Overall Project Objectives:
- ✓ 1) Direct REM magnets recycling by hydrogen treatment in 50 kg/day scale;
- ✓ 2) Non-REOs separation from REOs in 5 lbs/batch, 50 kg/day scale;
- ✓ 3) REMs production from REOs/salts by hydrogen reduction in 10 kg/day scale.

Technology Background

> Importance of critical minerals to U.S. economy and national security

- > Rare earth metals (REMs) demand soaring
- China is dominating REMs supply chain risk
- ✓ REMs mining challenge
- ✓ REMs recycling is a sustainable approach

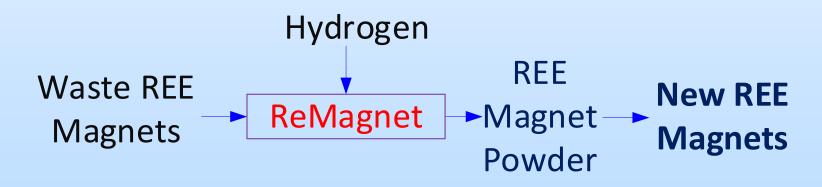
Conventional REOs to REMs by metal reduction or electrolysis has limitations

- Advantages of REOs to REMs by hydrogen reduction
 Clean process
- ✓ No side products

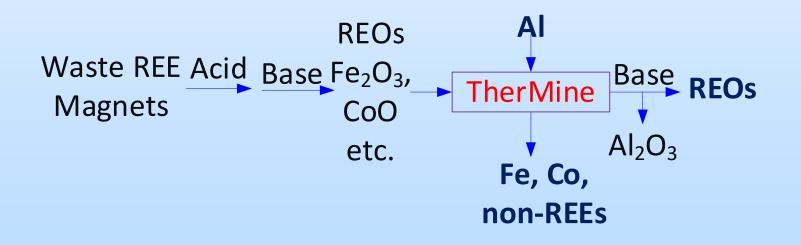
Technology Background

Recycling of rare earth metals from post-consumer products

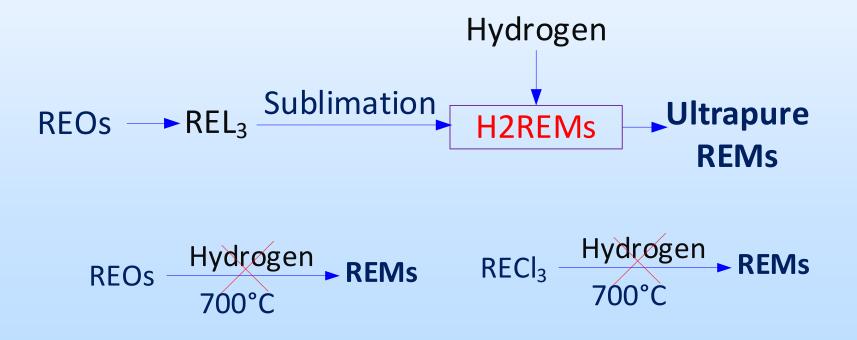
- > Avoid liquid phase extraction
- > Direct production of some REMs without electrolysis
- Phase 1 completed proof-of-concept for the approaches proposed



Technical Approach – Task 1


- REEs recycling from magnets from magnets
- ➤ ReMAGNETTM treatment of waste REEs magnets by hydrogen, producing REE magnet powder used for manufacturing new magnets
- ✓ No grinding needed
- Easy coating separation

Technical Approach – Task 2


► *TherMine*TM - Ultra-fast separation of non-REOs from REOs by thermite reaction

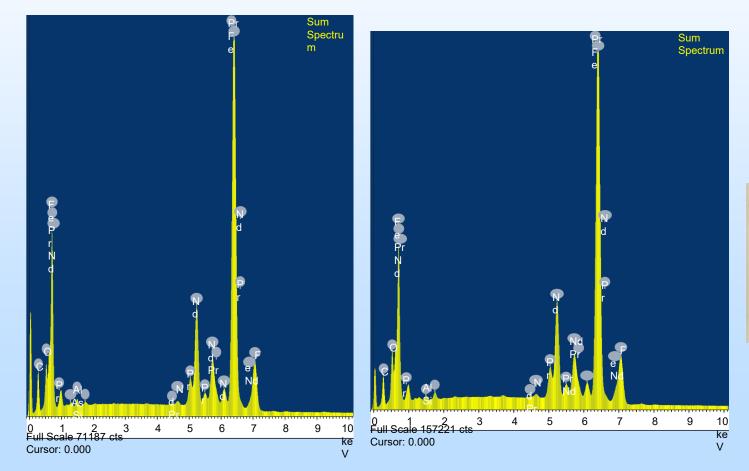
 $M_2O_3 + AI \longrightarrow Al_2O_3 + M$ M = Fe, Co, Ni, etc. non-REMs Extremely Exothermic

Technical Approach – Tasks 3 &4

*H*₂*REMs* TM - Hydrogen reduction of REE volatile compounds (REL₃) to REMs in high yield; high purity REMs production
 Hydrogen plasma facilitated REMs production

Acquired 3180 lbs crushed computer hard drives
 Separated and recovered parts with REMs: NdFeB magnets (364.2 lbs) and brushes (85.4 lbs)

- Direct hydrogen treatment
- ✓ By heating to 250°C for an hour at 300 psig
- ✓ Worked with and without demagnetization
- ✓ Over 96% of NdFeB and SmCo powder recovered
 ✓ Achieved 5 lbs per betch 50 kg per day scale



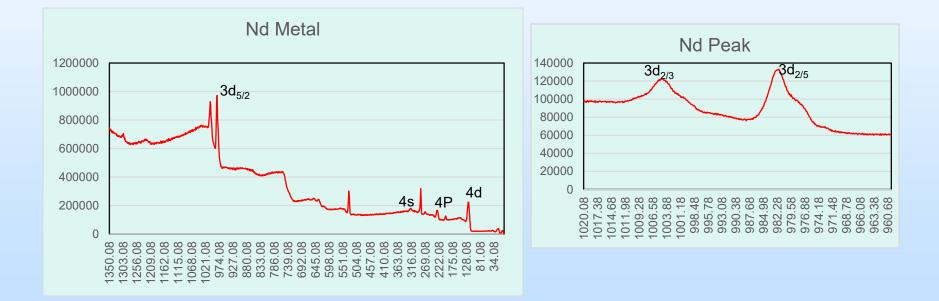
Metallic Nd, Fe, and Sm, Co obtained

Can be directly used for making magnets

- Achieved 5 lbs per batch, 100 lbs per day scale
- **Each reaction was completed under 15 minutes**
- Cake make with 12-ton hydraulic press
- Separate non-REOs from REOs

- > Fe and Co were reduced to metals; separated out by magnet
- **Worked well under CO**₂
- Direct Ce metal production from CeO₂
- Successful precious metal (Ru) recovery from waste catalyst

- **REOs reduction by hydrogen at 700°C failed**
- **Example 2 RECl**₃ reduction by H₂ at 500-700°C yielded RECl₂
- Successful REMs production using higher vapor pressure REL₃ (L=organic ligand) reduced by hydrogen at 600°C with catalyst
- ✓ Scaling up in progress



Nd metal product analytical result

- Hydrogen plasma facilitated reduction for REMs production
- Cost-effective custom plasma equipment developed
- ✓ Scaling up in progress

Plans for future development/ commercialization

- REE Magnets (NdFeB and SmCo) Production from Waste Magnets
- **Nd**, Sm, Dy, Pr Recycling from Magnets
- La, Ce Recycling from Refining Catalysts
- Ce Recycling from Polishing Sand
- Noble Metals Recover from Waste Catalyst
- High Purity REMs Production

Outreach and Workforce Development Efforts or Achievements

- Outreach activities
- Established a used electronics collection center for local community
- Gave talks on urban mining in local colleges and professional meetings
- ✓ Show and tell of critical materials in local science events
- ✓ worked and promoted technology with other companies
- Workforce Development
- ✓ Hiring 3 summer interns from colleges
- ✓ Hiring and training new professional

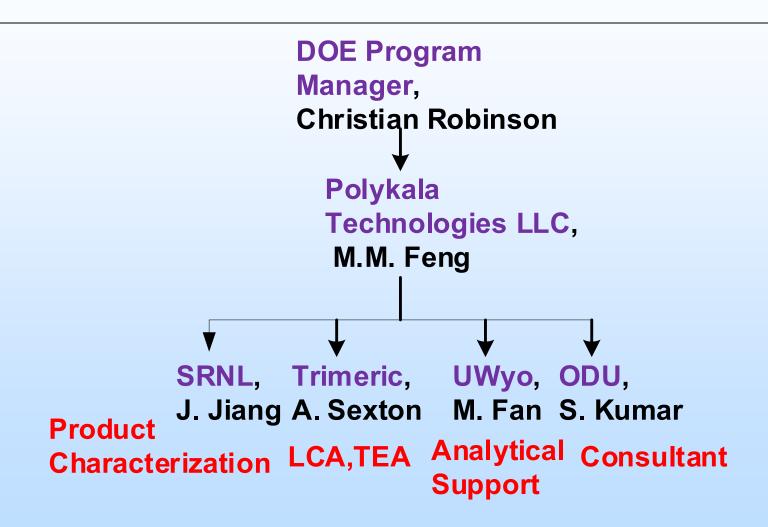
Summary Slide

- The ReMagnetTM process provides a straight forward way for REMs magnets recycling
- ✓ No necessary to separate REMs from the magnets
- A very efficient method for separating of non-REOs from REOs was developed
- ✓ Cost-effective chemicals used
- Rare earth metals production by hydrogen reduction successful
- Though REOs and chlorides didn't work out
- ✓ Plasma could facilitate the process

Appendix

Demagnetization

> Techno-economic Analysis


Year	0	1	2	3	4	5	6	7	8	9	10
	(\$5,31										
CAPEX	7,900)										
Max Net		\$1,46	\$1,466,	\$1,466	\$1,46	\$1,46	\$1,466	\$1,46	\$1,46	\$1,46	\$1,46
Revenue		6,400	400	,400	6,400	6,400	,400	6,400	6,400	6,400	6,400
NPV of Max	Net	\$151,	\$904,1	\$709 <i>,</i> 9	\$557 <i>,</i>	\$437,	\$343,7	\$269,	\$211,	\$166,	\$130,
Revenue		400	00	00	400	700	00	800	900	400	600

Appendix

Revenue per batch	Base Case	Free Feed		
Nd Metal Value	\$21,400	\$21,400		
Non-REE metals	\$400	\$400		
Total Gross Revenue/Batch	\$21,800	\$21,800		
MAX Net Revenue/Batch	\$6,400	\$16,300		

Operating Expenses per Batch	Base Case	Free Feed
Recycled NdFeB Magnet (Feed Material)	\$9,900	\$0
Chemicals	\$1,700	\$1,700
Base (NaOH)	\$1,500	\$1,500
Acid (HCl)	\$300	\$300
Gases	\$1,000	\$1,000
Heating for Drier	\$300	\$300
Wastewater Treatment	\$800	\$800
Solid Waste Disposal	\$20	\$20
Scrubber for Vent Gases	\$30	\$30
Electricity	\$50	\$50
MIN Total Expenses/Batch	\$15,600	\$5,700

Organization Chart

Gantt Chart

Tasks/Months (Year 1)	1	2	3	4	5	6	7	8	9	10	11	12
Task 1 <i>REMAGNET</i> process scale up			+									
Task 2 THERMINE process scale up						+						
Task 3 REMs production by									+			
hydrogen processing												
Task 4 REMs production under												+
plasma												

Tasks/Months (Year 2)	13	14	15	16	17	18	19	20	21	22	23	24
Task 5 Ultrapure REMs				+								
production by cascade separation												
Task 6 Pilot scale REMs										+		
production by hydrogen												
processing												
Task 7 Techno-economic analysis												+

Acknowledgement

DOE SBIR Phase 2 grant support – Contract No. DE-SC0021544

Christian Robinson, DOE SBIR project manager

Project partners