

Mid-APPalachian Carbon Ore, Rare Earth and Critical Minerals (MAPP-CORE) Initiative

DE-FE-0032054

Dr. Paul Ziemkiewicz Dr. Nate DePriest WVU Energy Institute

U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 2 - 4, 2024

Project:

Mid-APPalachian Carbon Ore, Rare Earth and Critical Minerals (MAPP-CORE) Initiative DE-FE032054

Period Of Performance:

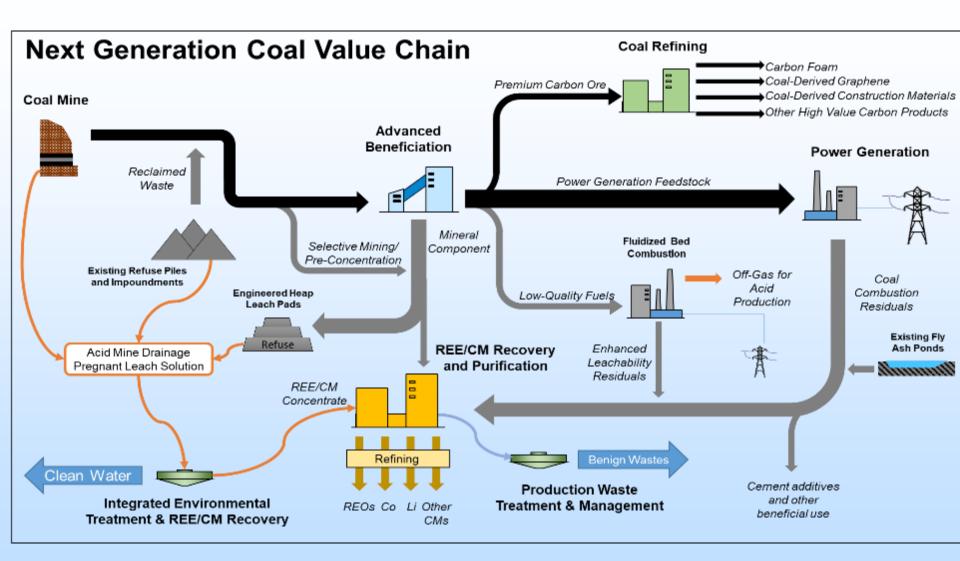
10/01/2021 through 08/30/2024

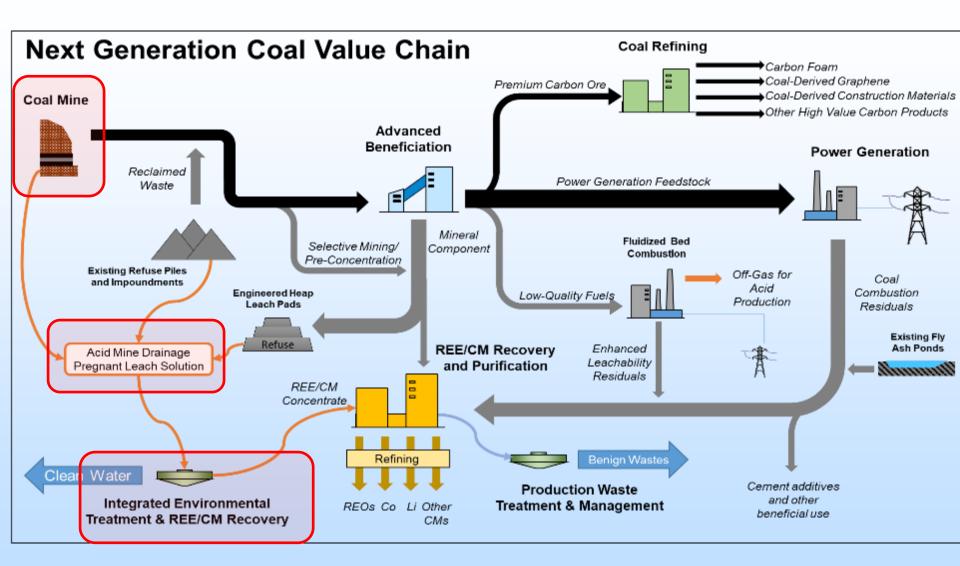
Funding:

Govt. Share: \$2,085,000.00 Cost Share: \$742,128.00 Total: \$2,827,128.00

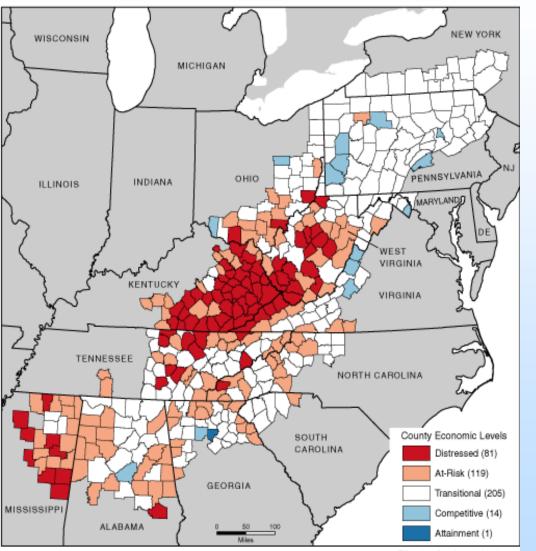
Project Participants:

- West Virginia University
- University of Kentucky
- Virginia Tech
- West Virginia Geological and Economic Survey
- Pennsylvania Geological Survey
- Kentucky Geological Survey
- DRB Geological Consulting
- Oak Ridge National Laboratory
- SynTerra Corporation
- TechConnect WV


Overall Project Objectives


Near-Term (Tactical)

- Develop resource assessments for CORE-CM feedstocks in basin
- Identify resource production technologies, including novel or low TRL approaches that may have unique application in basin
- Identify key infrastructure resources and infrastructure gaps within the study area
- Engage in-basin industrial/commercial partners to understand materials sourcing requirements and limitations


Long-Term (Strategic)

- Enable development of commercial supply chains for regional and national customers.
- Identify "value-added" technologies and technology gaps to enable development and deployment
- Identify domestic supply chain gaps and strategies to fill those gaps for industrial/commercial partners in the region.
- Provide the foundations for technology transfer and commercialization and deployment

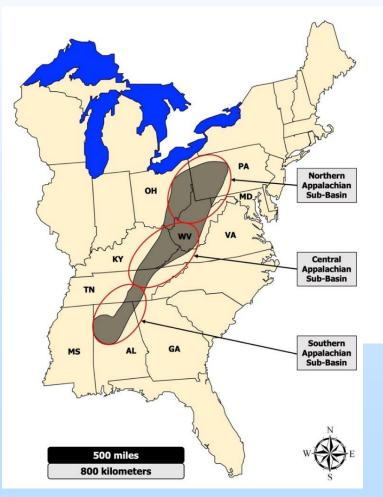
MAPP-CORE Vision

Created by the Appalachian Regional Commission, August 2018 Data Sources: Unemployment data: U.S. Bureau of Labor Statistics, LAUS, 2014–2016 Income data: U.S. Bureau of Economic Analysis, REIS, 2016

Poverty data: U.S. Census Bureau, American Community Survey, 2012-2016

- Full-cycle analysis:
 - upstream production
 - midstream refining and processing
 - downstream manufacturing of high value products
- Identified <u>AMD in Central</u> <u>Appalachia as an untapped</u> <u>resource.</u>
 - Technical, workforce and economic considerations.
 - Directly addresses social justice through economic development
 - Directly addresses environmental justice concerns through focus on mine waste cleanup and site reclamation opportunities.

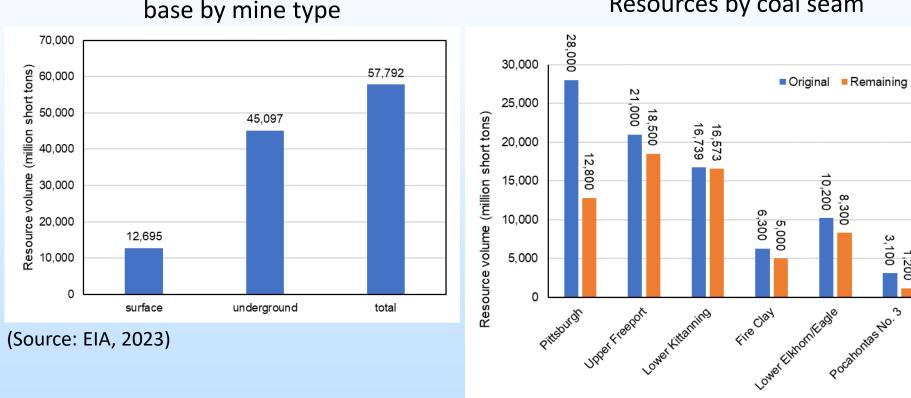
Effective October 1, 2018 through September 30, 2019


CORE-CM Resource Valuation Rubric

Criteria	Factors Considered	Score							
		1 – Poor	2 – Marginal	3 – Acceptable	4 – Good	5 – Exceptional			
Resource Significance	In place tonnage, annual availability, anticipated yield	Insignificant. Potential to supply <5% of total US demand with no major production of critical. Limited upside.	Niche markets. Potential to supply 5% to 10% of total US demand. Potential to be sole supplier to a single application area.	Small US player. Potential to supply 10% to 25% of US demand for a single specific element. Moderate upside with additional exploration.	Moderate US player. Ability to supply 25%+ of several elements. Significant upside/potential in unexplored areas.	Global player. Potential to meet the majority of US demand for several elements. High growth potential to meet additional demand.			
Resource Quality	REE/CM Grade, REE Distribution and criticality, Potential for CO/CM Byproducts.	Ore grades show no enrichment versus crustal concentrations (nominally 200 to 250 ppm TREE). Limited or no potential for upgrading. No preferential enrichment of CREE. Potential byproducts are not viable.	Slight enrichment above crustal concentrations (nominally 300 to 1000 ppm) with some potential for further upgrading. Slight preferential enrichment of CREE. Slight potential for marketable byproducts but concerns with viability.	Slight enrichment above crustal concentrations but with potential for significant upgrading to 1000 to 5000 ppm. Moderate enrichment of CREE and moderate potential for marketable products, particularly CO/CM.	Ore grades or potential to enrich >5000 ppm. Moderate enrichment of CREE and moderate potential for marketable CO/CM byproducts.	Ore grades or potential to enrich >10,000 ppm with significant enrichment of CREE. Significant potential for CO/CM byproducts.			
Technical Feasibility	Process amenability, anticipated recovery, reliance on conventional processes, scalability	Low recoverability (nominally <5%). Process train requires several non- commercial technologies at each stage. Most processes have not been proven at scale (Average TRL <3). Feedstock entails significant contamination that requires multiple processing stages.	Marginal recoverability (nominally 5% to 25%). Non-commercial solutions are required for most processing steps or the key processing steps. Average TRL across the process train is 3 to 4. Pilot data is very limited. Feedstock entails some contamination that can be properly mitigated.	Acceptable recoverability (nominally 25% to 50%). Process train includes a balanced mix of commercial and non-commercial solutions; however, questions on overall scalability/integration remain. Some pilot data is available but is not conclusive. Contamination is commensurate with conventional ores.	Above average recoverability (nominally 50%+). Process train primarily includes high TRL processes; however, some steps may still rely on non- commercial or developmental solutions (Average TRL = 5 to 6). Pilot data is available to justify the majority of the process variables. Contamination can be managed.	Feedstock allows full control of recoverability to fully optimize the process. All processing steps are derived from commercial solutions or have been validated and integrated. Significant pilot data supports process assumptions.			
Economic Feasibility	REE/CM Basket price, anticipated production	Anticipated production costs significantly exceed basket price	Production costs exceed basket price, but are within a	Basket price slightly exceeds production costs, but the project is	Basket price exceeds production costs and project is moderately	. Basket price substantially exceeds production cost.			

Basinal assessment of CORE-CM resources

Focused on Economically Significant Coal Beds in Central and Northern Appalachian sub-basins (eastern KY, western PA, WV)


- Current resource volumes for major coal seams
- REE distributions in coal beds

			roup rmati KY		Eastern Kentucky Coal Beds	West Virginia Coal Beds	Western Pennsylvania Coal Beds
Pennsylvanian	er	Monon- gahela	Monon- gahela	Monon- gahela	Conemaugh + Monongahela strata present in NE Kentucky with	Waynesburg Sewickley Redstone *Pittsburgh	Waynesburg Sewickley Redstone *Pittsburgh
	Upper	Cone- maugh	Cone- maugh	Cone- maugh	<i>no mineable coal</i> Harlem Bakerstown Brush Creek	Little Pittsburgh Little Clarksburg Harlem Bakerstown Brush Creek	Little Pittsburgh Little Clarksburg Harlem Bakerstown Brush Creek
	Middle	Allegheny		Allegheny	Princess No.9 Princess No. 8 Princess No. 7 Princess No. 6 Princess No. 5 a,b Princess No. 5	Mahoning *Lower / Upper Freeport Middle Kittanning *Lower Kittanning / No. 6 Block Clarion / No. 5 Block Little No. 5 Block	Mahoning *Lower / Upper Freeport Middle Kittanning *Lower Kittanning Clarion Brookville
		Kanawha	Breathitt	a	Hazard No. 9 Hazard No. 7 *Hazard No. 7 Taylor *Fire Clay U. Whitesburg L. Whitesburg *Upper Elkhorn No. 3 Upper Elkhorn No. 1.2	*Stockton *Coalburg Winifrede Chilton Fire Clay Cedar Grove Alma *No. 2 Gas Powellton	Upper Mercer Lower Mercer Tionesta Quakertown
	er	New River		Pottsville	*Lower Eikhorn Manchester Tunnel Cumberland Gap base of	Fowellen Matewan laeger *Sewell Fire Creek Pocehontas No. 8	Sharon base of Pennsylvanian section in western Pennsylvania
	Lower	Pocahontas			Pennsylvanian Section in Kentucky	Pocahontas No. 7 Pocahontas No. 7 Pocahontas No. 6 Pocahontas No. 5 Pocahontas No. 4 Pocahontas No. 3 Pocahontas No. 2	*Economically significant coal beds

Appalachian coal resources

Demonstrated coal reserve

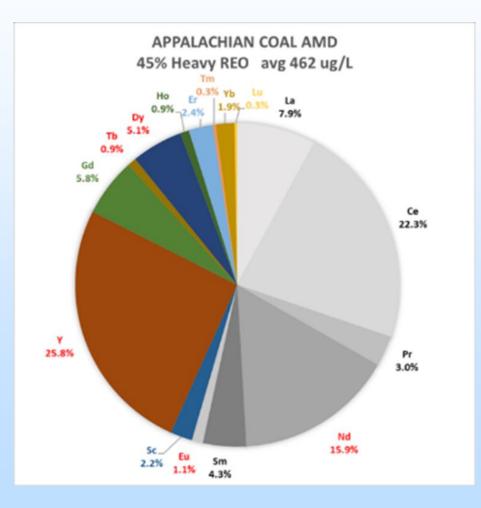
Resources by coal seam

Coal seam

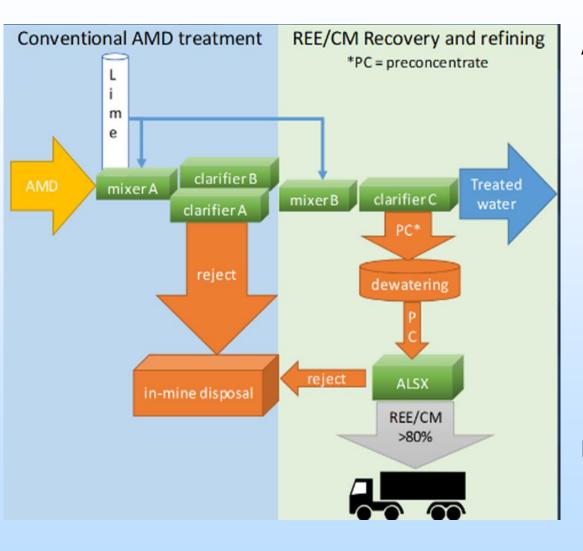
3,100 1,200

(Source: USGS, 2001)

Distribution of REEs in Appalachian coal beds


(ppm, mg/kg)			(ppm, mg/kg)			(ppm, mg/kg)
PA Coal Bed / Zone Waynesburg	Total REE + Y + Sc 200 400 600	800 800	KY Coal Bed / Zone Princess #8_9_10 Princess #7	Total REE + Y + Sc 0 250 500 750 10 0 250 500 750 10	WV Coal Bed / Zone Redstone	Total REE + Y + Sc 0 200 400 600 800 1000
Redstone		Monongahela Group	Princess #5_6 Richardson		Pittsburgh	
Pittsburgh		Mor	Skyline/Tiptop Hazard #9		L. Kittanning	
U. Freeport			Hazard #8 Hazard #5A_7		No. 5 Block	
			Hazard Haddix		Stockton	
L. Freeport		ation	Hamlin/Taylor Fire Clay Rider		Coalburg	
U. Kittanning		/ Form	Fire Clay Whitesburg		No. 2 Gas	
M. Kittanning		Allegheny Formation	Amburgy Up. Elkhorn #3		Eagle	
L. Kittanning		R	Up. Elkhorn #1_2 Lower Elkhorn Clintwood		Sewell	
Brookville			Hagy/Millard Gray Hawk		Beckley	
		e e	Beattyville Barren Fork		Fire Creek	
Mercer		Pottsville Group	Stearns		Pocahontas 3-9	

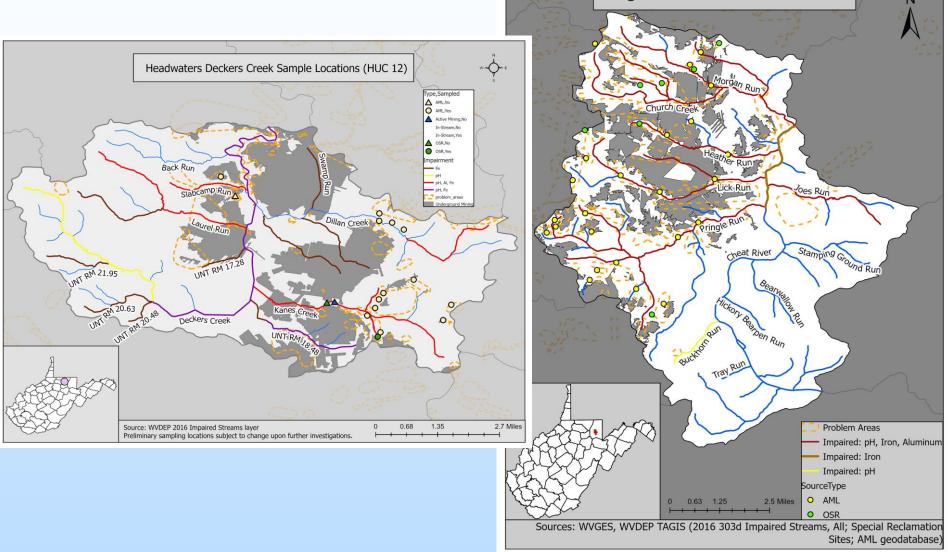
- REE/CM ratios are similar across the basin
- REE concentrations 400-1000 ppm (mg/kg)


(Source: Palmer et. Al., 2015)

Rare earth elements (REEs) and critical materials (CMs) in acid mine drainage (AMD)

- <u>AMDREE Program</u>: WVWRI finds REEs consistently exist in Raw Coal AMD across 140 separate sites
- <u>Current efforts</u>: 146 AMD sources sampled to-date for CORE-CM to identify watershed candidates for REE/CM recovery
- WVWRI also finds that CMs such as Cobalt and Nickel exist in equal concentration to REEs

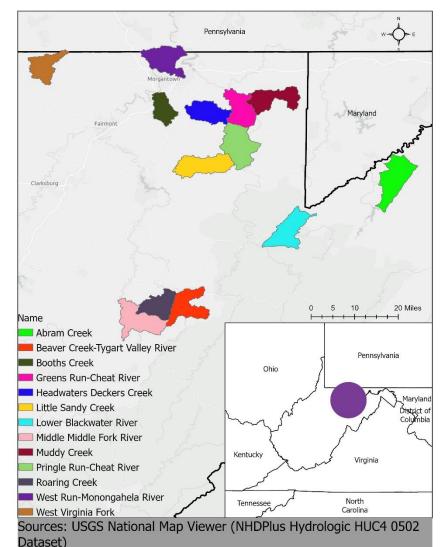
REE/CM recovery from AMD


Advantages:

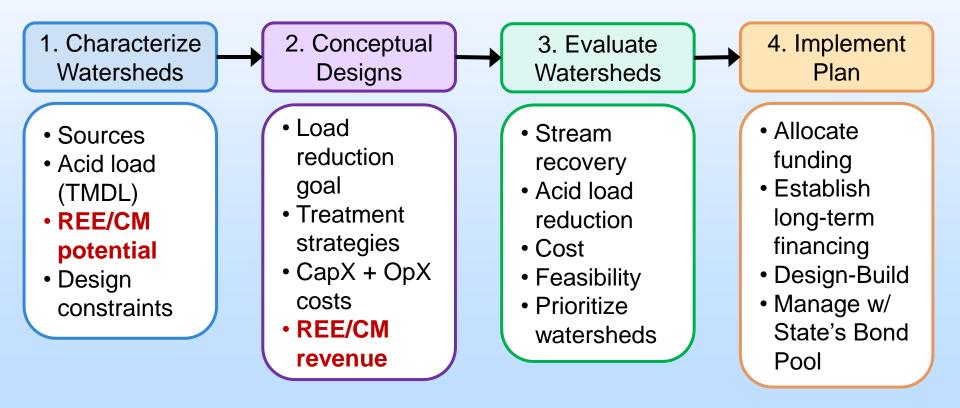
- Concentrates are 45%
 HREE
- Incentivizes AMD treatment
- Discharges CWA compliant water
- Already permitted sites
- Can go into production almost immediately
- Modest additional CapX
- No rads, solid rejects are non-hazardous

Disadvantages:

 Small, dispersed, upstream production sites

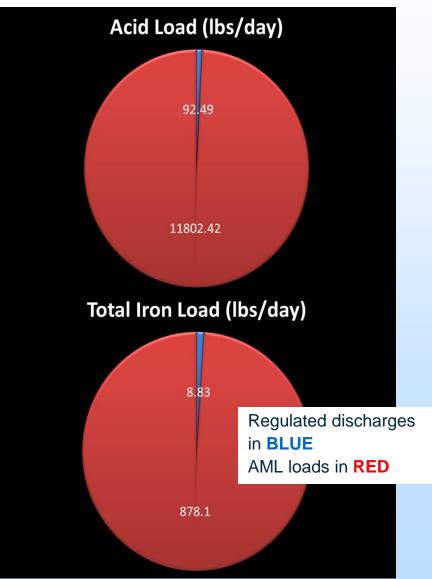

CORE CM Project: Characterize REE/CM recovery potential in multiple impaired watersheds Pringle Run Identified Sources

REE/CM loads in AMD-impacted Appalachian watersheds


Watershed	REE load (ton/yr)	CM load (ton/yr)
Muddy Creek (Cheat River)	0.55	8.80
Middle Cheat (Cheat River)	4.93	78.88
Greens Run (Cheat River)	0.61	9.76
Lower Deckers (Mon River)	0.53	8.48
Upper Deckers (Mon River)	0.14	2.24
Long Run (Blackwater)	0.60	9.60
Three Fork (Tygart)	0.50	8.00
Total	7.86	125.76

- Sampling at sources in AMD-impacted watersheds
- 146 sites sampled to date
- Common for REE load to exceed target of 0.5 ton/yr
- Non-REE CMs: Co, Ni, Mn
- Integrated into AMD treatment
- REE/CM recovery to offset OpX costs
- Network of sites for domestic REE/CM supply chain

Integrating REE/CM recovery into watershed-scale restoration


- Treat AMD and restore streams at watershed-scale
- Evaluate restoration based on designated use and TMDL instead of NPDES
- Recover REE/CM from multiple sources as part of treatment to offset costs and contribute to supply chain

Case study: Muddy Creek Watershed / T&T AMD Treatment Plant

Before "watershed-scale restoration"

- Impairments
 - Muddy Ck responsible for ~50% of acid load to Cheat River
 - Three tributaries severely polluted: Fickey Run, Martin Ck, Glade Run
 - Cheat River dead downstream of Muddy Creek
- Regulatory Structure
 - Point discharges (OSR, NPDES) (Title 5) vs,
 - AML discharges (Title 4)
- Initial restoration plan
 - Multiple AMD treatment units on Bond Forfeiture sites
 - Expensive w/ no stream recovery

Watershed treatment approach

- Treat ALL sources to recover watershed
- Many point sources and bond forfeiture AMD treatment units replaced by centralized treatment plant
- Consolidated deep mine AMD
- EPA granted in-stream NPDES permit variance

Financial Outcomes

Comparing Watershed to Point Source

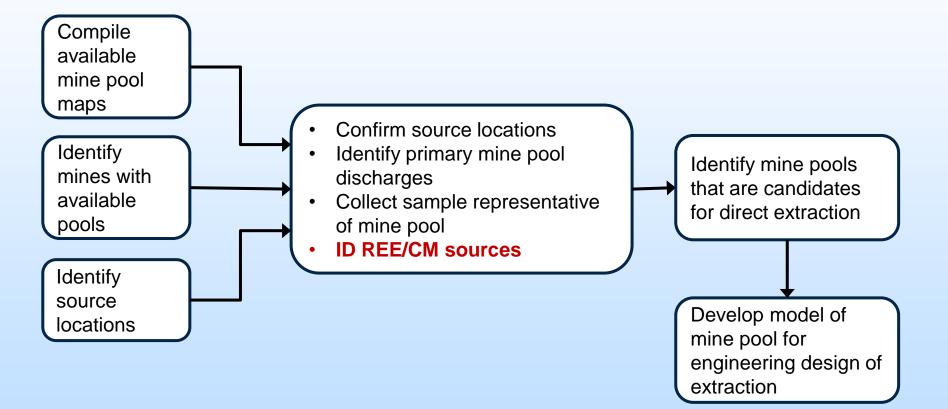
- Higher CapX: water transfer, central facility
- Lower OpX: road maintenance, compliance monitoring, QC, supplies
- Contribution from Southwestern Energy (SWE)
- Documented costs/benefits attractive to external sponsors

Long-Term Costs (10-yr basis)

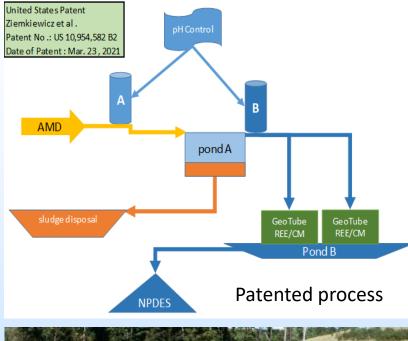
- Point source: \$22.5 M
- Watershed: \$21.2 M
- Watershed (w/ SWE contribution): \$15.2 M

Future Plans

- REE/CM recovery
- Offset to OpX costs


Restoration Outcomes

Confluence of Muddy Ck and Cheat River before and after completion of T&T plant



- Reductions in major metals
- pH increase
- Improvement in biological indictors (fish and macros)

Mine Mapping (coordination w/ WVGES)

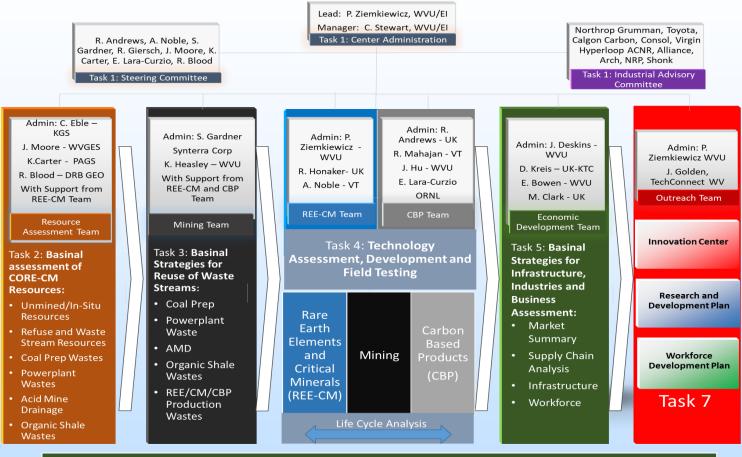
REE/CM Production Technologies

Future CORE-CM Development

- 1. Continued partnerships with government agencies to find sources of REE/CM in other waste feeds
- 2. Continue to build partnerships with industry partners to find both sources of REE/CM and find environmentally benign solutions to treating waste streams
- 3. Scale up of AMD treatment to restore watersheds while **recovering REE/CM**

Summary

- Basinal assessment of CORE-CM resources.
- WVU Water Research Institute has begun the \$500K extension to sample REE/CM in AMD-impacted watersheds of West Virginia.
- Using BIL funds via WVDEP, install multiple watershed restoration projects incorporating REE/CM recovery.


Questions? Nate DePriest, WVWRI ndepries@mail.wvu.edu

Appendix

Project Structure and Team

MAPP CORE Organizational Chart

CORE-CM Initiative for U.S. Basins DE-FOA-0002364

Task 6: Stakeholder Outreach

MAPP CORE Gantt Chart

TASK ASSIGNED TO	PROGRESS	START	END					
Task 1 - Project Management	100%	10/1/21	8/30/24					
Task 2 - Basinal Assessment of CORE-CM resources								
2.1 - Unmined/In-Situ Resources (I.e. unmined seams)	100%	10/1/21	8/30/24					
2.2 - Refuse and Waste Stream Resources	100%	10/1/21	8/30/24					
2.2.1 - Coal Prep Wastes	100%	10/1/21	8/30/24					
2.2.2 – Powerplant Wastes	100%	10/1/21	8/30/24					
2.2.3 – Acid Mine Drainage	100%	10/1/21	8/30/24					
2.2.4 – Organic Shale Wastes	100%	10/1/21	8/30/24					
2.3 - Basinal Resource Assessment and Characterization and Da	ta Acquisition F	10/1/21	8/30/24					
Task 3 - Basinal Strategies for Reuse of Waste Strea	ams							
3.1 Pre-Combustion Coal Refuse	100%	10/1/21	8/30/24					
3.2 Low Flow Acid Mine Drainage	100%	10/1/21	8/30/24					
3.3 Selective Mining and Sorting	100%	10/1/21	8/30/24					
3.4 Fluidized Bed Combustion of Waste Coals	100%	10/1/21	8/30/24					
3.5 - REE/CM/CBP Production Wastes	100%	10/1/21	8/30/24					
3.6 - Waste Stream Reuse Plan	100%	10/1/21	8/30/24					
3.X - CROSSCUT Task - TEA (Tasks 3.1, 3.2, 3.3, 3.4, 3.5)	100%	10/1/21	8/30/24					
Task 4: Basinal Economic Assessment:								
4.1 - CORE-CM Market Summary - Industries and Products	100%	10/1/21	8/30/24					
4.2 - Supply Chain Analysis	100%	10/1/21	8/30/24					
4.3 - Infrastructure	100%	10/1/21	8/30/24					
4.4 - Economic Impacts of CORE-CM Products	100%	10/1/21	8/30/24					
4.5 - Data Check and Report Preparation – Basinal Strategies for	I 100%	10/1/21	8/30/24					
4.6 Summary of Environmental Justice Considerations	50 <mark>%</mark>	10/1/21	8/30/24					
Task 5: Technology Assessment, Development and	Field Testing	g:						
5.1 Upstream Technology Development	100%	10/1/21	8/30/24					
5.2 Downstream Technology Development	100%	10/1/21	8/30/24					
5.3 - Data Check and Report Preparation - Technology Assessme	50%	10/1/21	8/30/24					
5.4 - Sampling Extension	20%	10/1/21	8/30/24					
Task 6 - Stakeholder Outreach								
6.1 Identify regional stakeholders	100%	10/1/21	8/30/24					
6.2 Develop Plan for Outreach and Education	50%	10/1/21	8/30/24					
Task 7 - Technology Innovation Center								
7.1 - Technology Innovation Center Plan	50 <mark>%</mark>	10/1/21	8/30/24					