

Consortium to Assess Northern Appalachian Resource Yield (CANARY) of CORE-CM for Advanced Materials (DE-FE0032052)

2024 NETL Resource Sustainability Project Review Meeting

Sarma V Pisupati Professor, Energy and Mineral Engineering Director Center for Critical Minerals Barbara Arnold

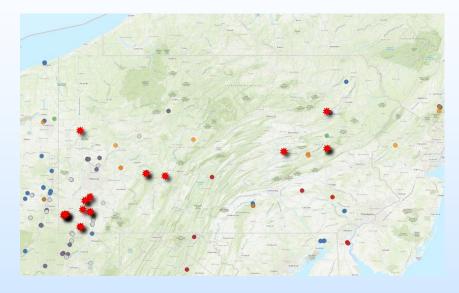
Chair and Professor of Practice, Mining Engineering

Highlights by Task

- Task 1.0 Project Management and Planning
 - Environmental Justice Targets
 - Economic Revitalization and Job Creation Targets
 - Environmental, Safety, and Health Analysis
- Task 2.0 Basinal Assessment of CORE-CM Resources
- Task 3.0 Basinal Strategies for Reuse of Waste Streams

PennState College of Earth and Mineral Sciences

- Task 4.0 Basinal Strategies for Infrastructure, Industries and Businesses
- Task 5.0 Technology Assessment, Development and Field Testing
- Task 6.0 Technology
 Innovation Center
- Task 7.0 Stakeholder Outreach and Education


- Task 1.0 Project Management and Planning
 - Environmental Justice Targets
 - Economic Revitalization and Job Creation Targets
 - Environmental, Safety, and Health Analysis
- Task 2.0 Basinal Assessment of CORE-CM Resources
- Task 3.0 Basinal Strategies for Reuse of Waste Streams

- Task 4.0 Basinal Strategies for Infrastructure, Industries and Businesses
- Task 5.0 Technology Assessment, Development and Field Testing
- Task 6.0 Technology Innovation Center
- Task 7.0 Stakeholder Outreach and Education

PennState College of Earth and Mineral Sciences

Mine Tailing Health & Safety Implication for Potential CORE-CM Recovery in North Appalachian Basin

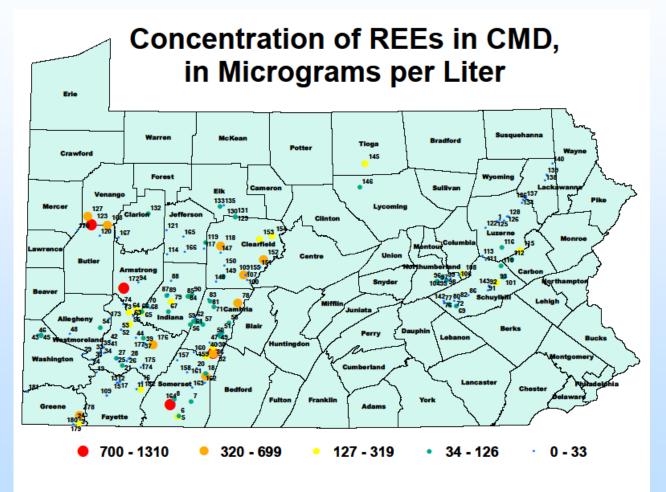
By selecting Federal Agency Involvement Regulatory --- MSHA (Mine Safety and Health Administration), High and Significant risk tailing dams have been assigned as red pins

- Tailings are resources with extraction risk in North Appalachian Basin
- MSHA regulated a few high or significant risk tailings in Pennsylvania (12), Ohio (3), West Virginia (40).
- The special tailing sites (High and low risks) are investigated for comparison. High risk ones are large volume tailings.
- Field work will be required
- Very limited geomechanical and geotechnical information in open literature
- Site specific information may need for resource estimation

- Task 1.0 Project Management and Planning
 - Environmental Justice Targets
 - Economic Revitalization and Job Creation Targets
 - Environmental, Safety, and Health Analysis
- Task 2.0 Basinal Assessment of CORE-CM Resources
- Task 3.0 Basinal Strategies for Reuse of Waste Streams

- Task 4.0 Basinal Strategies for Infrastructure, Industries and Businesses
- Task 5.0 Technology Assessment, Development and Field Testing
- Task 6.0 Technology
 Innovation Center
- Task 7.0 Stakeholder Outreach and Education

PennState College of Earth and Mineral Sciences


Targeted Resources

- Acid mine drainage/sludge—have received samples from some of our top targets
- Tailings impoundments (ash from FBCs, coal, metal mines)
- Metal slags
- Coarse coal preparation plant refuse
- Coal underclays—Mercer and Lower Kittanning
- Coal for carbon ore/graphite
- Produced waters (potential Li source)

Acid Mine Drainage

Literature Data Cataloged

PennState Compilation by Stakeholder Group member, John Memmi

Acid Mine Drainage

Additional new WV and PA samples in progress

New Samples

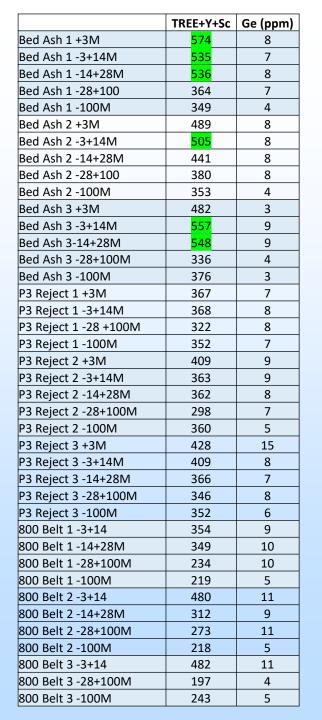
	Location	рН	Mg (ppm)	Al (ppm)	Mn (ppm)	Ni (ppm)	Zn (ppm)	TREE (ppb)	HREE (ppb)	LREE (ppb)	H/L
	Clearfield 1	3.66	323.74	37.89	41.84	1.65	3.12	545	310	230	1.35
Previous sites	Clearfield 2	4.00	128.53	14.20	17.15	0.46	0.81	431	180	250	0.72
	Clearfield 3	3.72	176.94	18.75	22.33	0.70	1.14	472	210	260	0.81
	MD 1	2.77	299.99	54.53	49.67	1.60	5.71	1415	703	712	0.99
	MD 2	5.99	108.34	7.81	12.19	0.35	1.26	207	114	91	1.26
Current sites	MD 3	3.11	224.51	33.98	33.39	0.90	3.70	871	438	432	1.01
	MD 4	2.95	166.93	30.52	27.71	0.74	2.90	698	350	348	1.01
	MD 5	3.10	149.25	33.12	27.42	0.89	3.35	832	416	416	1.00

Upper Freeport Seam mined at the MD site

Pittsburgh Seam Refuse Samples from Lab Tests

	TREE	+Y + Sc	Prim Mag	Sec Mag	LREE	HREE	Ga	Ge
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
B -28+100 Heavy	366	474	98	27	323	30	57	53
B -28+100 Medium	203	266	55	16	179	17	31	28
B -16+28 Heavy	262	320	59	15	240	16	29	7
						μςς	19	1.5

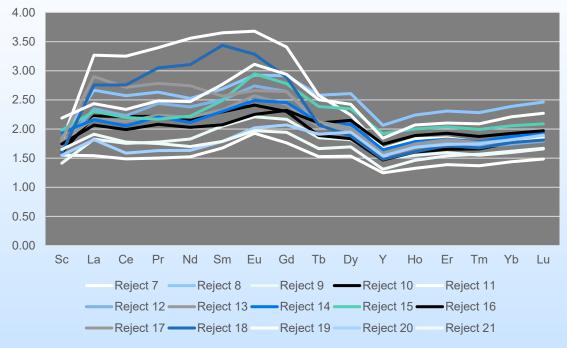
	TREE	+Y + Sc	Prim Mag	Sec Mag	LREE	HRE	E Ga	Ge
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm	n) (ppm)	(ppm)
H -28+100 Heavy	317	413	81	24	279	27	43	45
H -16+28 Heavy	474	616	130	36	418	40	70	57
						UCC	2 19	1.5


FBC (Fluidized Bed Combustor) Site 1

Separate fly ash and bottom (bed) ash

Feed coal and coarse refuse reject sample

Coarser fractions, again, generally have higher REEs

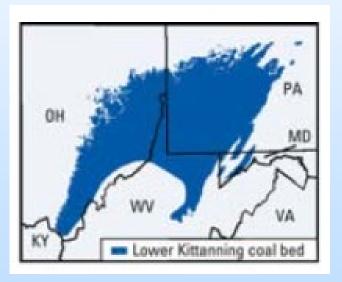

A few anomalies for Ge?? UCC for Ge = 1.5 ppm

Additional FBC Site 1 Data— Coarse Rejects

Coarse Rejects

Variation from June through December sampling period What is the coarse preparation plant reject? Possibly Lower Kittanning seam roof

Sample	TREE+Y+Sc	Prim Mag	Sec Mag	Ge
Reject 7	271	57	15	12
Reject 8	450	95	25	7
Reject 9	316	68	19	11
Reject 10	373	80	20	6
Reject 11	536	126	31	8
Reject 12	392	87	23	6
Reject 13	376	81	21	7
Reject 14	371	79	21	7
Reject 15	398	83	23	6
Reject 16	359	76	20	8
Reject 17	455	99	23	7
Reject 18	463	110	28	8
Reject 19	424	92	25	7
Reject 20	301	62	17	7
Reject 21	312	64	17	14

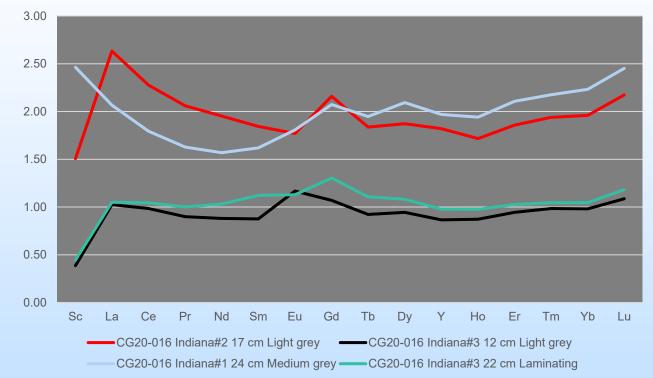

UCC for Ge = 1.5 ppm

PennState

	Samples	TREE + Y + Sc	Prim Mag	Sec Mag
FBC Site 2	Ash 6/11	<mark>501</mark>	100	25
	Ash 6/11+3M	<mark>505</mark>	101	25
	Ash 6/11-3+14M	<mark>605</mark>	132	29
	Ash 6/11-14+28M	<mark>520</mark>	107	26
	Ash 6/11 -28+100M	366	73	19
	Ash 06/11 -100M	355	75	21
Combined fly ash	Coal 6/11	330	71	16
and bottom (bed)	Coal 6/11 +3M	<mark>513</mark>	114	26
(/ /	Coal 6/11-3+14M	477	106	24
ash	Coal 6/11 -14+28M	332	70	16
	Coal 6/11 -28+100M	276	59	14
Coarser fractions	Coal 6/11 -100M	204	42	13
	Coal 6/10	367	81	18
higher in REEs	Coal 6/10 +3M	453	94	24
	Coal 6/10 -3+14M	486	105	24
	Coal 6/10-14+28M	333	89	21
	Coal 6/10 -28+100M	253	88	21
	Coal 06/10 -100M	180	87	21
	Ash 6/10	479	84	20
	Ash 6/10+3M	<mark>629</mark>	83	20
	Ash 6/10 -3+14M	<mark>704</mark>	83	20
	Ash 6/10 -14+28M	<mark>509</mark>	84	20
PennState	Ash 6/10 -28+100M	388	85	20
	Ash 06/10 -100M	364	83	20

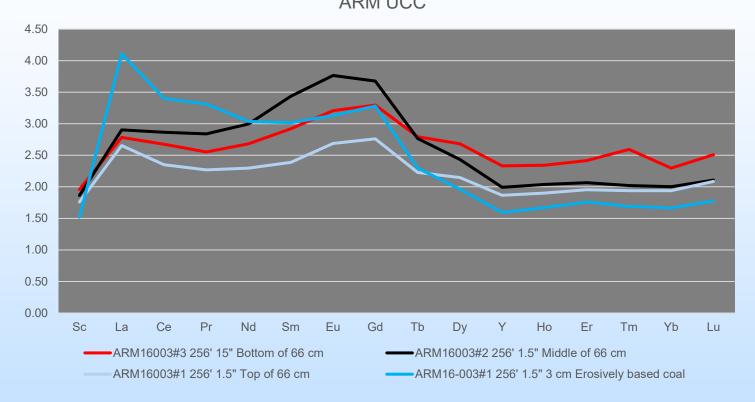
Lower Kittanning Seam

 Mining company core samples collected around the basin (PA and WV)

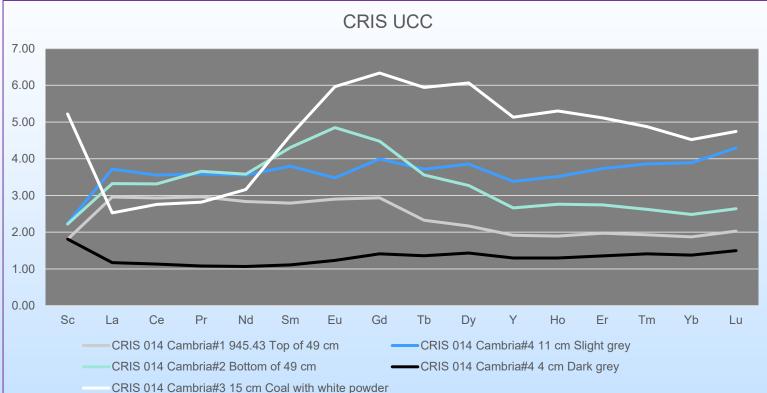


https://pubs.usgs.gov/fs/fs004-02/fs004-02.html

- "Underburden" quite variable across the basin based on core descriptions and ICP data, though general trend for high REEs just under the coal
- Literature suggests very finely disseminated minerals (micron size) interspersed in the clay would require leaching for recovery
- More samples underway including cores from the "roof"



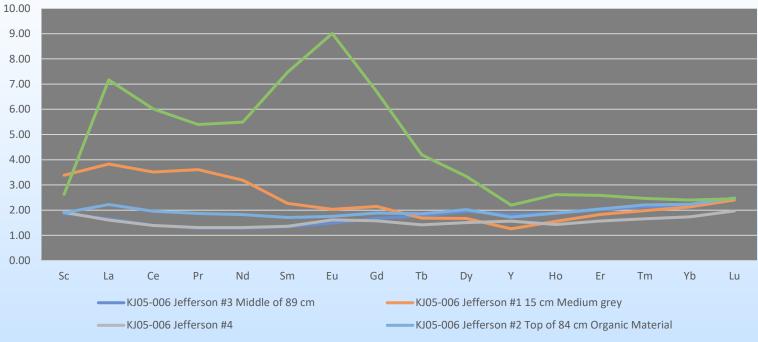
CG20 UCC


	TREE+Y+Sc	Primary Mag	Sec Mag
CG20-016 Indiana#3 12 cm Light grey	388	73	18
CG20-016 Indiana#1 24 cm Medium grey	166	33	9
CG20-016 Indiana#3 22 cm Laminating	344	61	17
CG20-016 Indiana#2 17 cm Light grey	182	38	11

PennState

	TREE+Y+Sc	Primary Mag	Sec Mag
ARM16003#3 256' 15" Bottom of 66 cm	474	99	28
ARM16003#2 256' 1.5" Middle of 66 cm	493	108	31
ARM16003#1 256' 1.5" Top of 66 cm	415	85	23
ARM16-003#1 256' 1.5" 3 cm Erosively based coal	<mark>546</mark>	111	27

PennState



	TREE+Y+Sc	Primary Mag	Sec Mag
CRIS 014 Cambria#1 945.43 Top of 49 cm	485	104	25
CRIS 014 Cambria#4 11 cm Slight grey	<mark>636</mark>	134	35
CRIS 014 Cambria#2 Bottom of 49 cm	<mark>590</mark>	133	39
CRIS 014 Cambria#4 4 cm Dark grey	222	41	11
CRIS 014 Cambria#3 15 cm Coal with white powder	<mark>643</mark>	127	49

ennState

KJ05 UCC

	TREE+Y+Sc	Primary Mag	Sec Mag
KJ05-006 Jefferson #3 Middle of 89 cm	282	51	14
KJ05-006 Jefferson #1 15 cm Medium grey	<mark>561</mark>	116	20
KJ05-006 Jefferson #4	271	49	13
KJ05-006 Jefferson #2 Top of 84 cm Organic Material	354	69	16
KJ05-006 Jefferson #1 310.6 4 cm dark grey	<mark>961</mark>	195	61

KJ05-006 Jefferson #1 310.6 4 cm dark grey

PennState

HISTORIC METAL MINES

- Review of Northern Appalachian metal mines that
 produced battery metals/other critical minerals
- Also documenting uranium, rare earth elements, graphite (historic production in PA and NY), and titanium mines/occurrences

Ohio (eastern) Metal Mine Summary for Battery Elements (also for PA, NWV, MD)

Location (County)	Commodity	Following Commodities	Critical Mineral(s)	Plant Name	Opened	Closed	Tonnage Produced Est.	Prod. Size	Current Land Use
(county)	commonly	ronowing commodities	Winter al(3)		openeu	closed	239,700 tonnes	1100.5120	
							(1967-1992). 99.3%		
Ashtabula	Titanium	None	Ti	Ashtabula Processing Plant	1967	1992	sponge rate	Significant	Factory
Ashtabula	Aluminium	None	AI	Therm-X Company Aluminum Site				Small	Native restoration, vegetation
Gallia	Aluminium	Iron, Titanium	Al, Ti	Clarion Fire Clay Silica Occurrence	Est. 1959	Est. 1973		Significant	Still there
Guernsey	Aluminium	Iron	AI	Lower Kittanning Under Clay Iron Occurrence	1850			Significant	Vegetation
Guernsey				·· · ·			-		
Lawrence	HO	uses. ve	edei	ation, factory	/. Oľ	าเก	one si	te sti	ll there. 🗖
Mahoning	r	, -			· · ·	J			
Monroe	Aluminium	None	AI	Hannibal Reduction Plant	1958			Small	Houses
Muskingum	Aluminium	Iron, Titanium	Al, Ti	Brookville Underclay Aluminum Occurrence	1850	ESt. 1975		Significant	Vegetation
Scioto	Aluminium	Iron, Titanium	Al, Ti	Sciotoville Fire Clay Silica Occurrence	1861	Est. 1978		Significant	Vegetation
Jefferson	Chromium	Iron	Cr	Steubenville Smelter				Significant	Houses
Trumbull	Titanium	None	Ті	Niles Steel Plant	1950		21,515 tonnes (1991-1992)	Significant	Houses
Cuyahoga	Zirconium	None	Zr	Harshaw Chemicals Processing Plant				Small	Houses
Cuyahoga	Zirconium	None	Zr	Zircoa Refractories Processing Plant				Small	Houses
Cuyahoga	Zirconium	None	Zr	Sherwood Refractory Cleveland Plant				Small	Houses
Cuyahoga	Beryllium	None	Be	Brush Wellman Processing Plant				Small	Houses
Cuyahoga	Aluminium	Iron	AI	Metallurgical Incorporated Processing Plant				Small	Houses
Cuyahoga	Nickel	None	Ni	Hanna Nickel Smelter				Small	Houses
Cuyahoga	Zirconium	None	Zr	Lincoln Electric Processing Plant				Small	Houses

15 sites in NWV, 2 in MD panhandle, 22 in PA most are reclaimed or developed sites


Historic Metal Mines

Also evaluating slag

- Historic mines throughout PA, MD, NWV, OH
- Last metal mine in PA closed in the 1980s
- PAGS samples from wastes at the sites

	•			
	Mine Tailings	Total REEs	+ Y + Sc	Со
	Boyertown	445	464	125
$\left(\right)$	French Creek (also 2.7% Cu)	4002	4117	768
	Grace	43	56	694
	Jones	11	16	445

Estimation of lithium resources in Pennsylvania's shale energy produced fluids

- This analysis estimates that in years 2021 and 2022 approximately 1,200 and 1,300 metric tons of lithium were contained in shale gas produced fluids from PA alone.
- Dependent on the extraction technology It is predicted that lithium recovery efficiencies of 60-90% can be achieved.
- In 2022 between ~800 to 1200 metric tons of lithium could be recovered from shale gas produced fluids in Pennsylvania alone, which is similar to current annual national lithium production.
- Year 2050 nearly doubles the potential lithium resource to 1,900 metric tons/year based on EIA shale gas production projections

Mapping

Toronto	Lake Ontario	7 (1	Vermont New Hampsh	- <mark>-</mark> (Canary	
London	Rochester	Maw York	C		Power Plants (US)	•••
	(1 of 8)	B Appl Geoch: SO	ssachusetts	•	Coal Mines (US)	
ake Erie	0434-06			▶ 🗌	Cravotta-Brady 2015 Priority Pollutants	
leveland	USGS_staid	400627078481601	tic ut	_		
90,9	Map_num	71	and a	▶	Appalachia Counties	
0 00	Local_name	SO 0434-06	200	. —		
Pitenege	lat_dd83	40.11		▶∟	Coal Fields (US)	
	lon_dd83	-78.80			Cravotta - 2008 Appl Geoch	
8	Coal_type	Bituminous			Clavolla - 2008 Appl Geoch	
· · ·	Cnty_name	Somerset		•		
	Quad_name	Central_City		. —	Hedin 2020 Supplemental Names	
West Viginia	Wshed_name	Dark Shade Creek		▶□	Locations	
Charleston	Coal_seams	Mercer/Brookville			Abandoned Underground Mines (OH	
· · ·	DATES	19,990,804	100 M	r 🗌	Mines)	
Virgini	TIMES	1,745		▶□	Surface Mines (OH Mines)	
Providence of the second	Zoom to		•••			
BOIN	11.7	NOTOIK		•	Surface Industrial minerals mine operations (OH Mines)	5
Croonshore	1 K S			_	Surface Coal Mining Operations (OH	

Working on querying capability

- Task 1.0 Project Management and Planning
 - Environmental Justice Targets
 - Economic Revitalization and Job Creation Targets
 - Environmental, Safety, and Health Analysis
- Task 2.0 Basinal Assessment of CORE-CM Resources
- Task 3.0 Basinal Strategies for Reuse of Waste Streams

 Task 4.0 - Basinal Strategies for Infrastructure, Industries and Businesses

- Task 5.0 Technology Assessment, Development and Field Testing
- Task 6.0 Technology Innovation Center
- Task 7.0 Stakeholder Outreach and Education

PennState College of Earth and Mineral Sciences

Carbon Ore

- Lots of "carbon ore" (coal) available in NAPP covering most bituminous ranks (including coking coals) and anthracite
- Documented anthracite graphitization studies
- "Coking" coals source for carbon fibers and graphite

Opportunities (per J. Mathews)

Multiple opportunities exist:	Bituminous	Anthracite
Carbon fibers	V. High	-
Graphite	V. High	V. High
 Graphene + associated 	V. High	V. High
Electrically Conductive ink	Low	High
• Foams	V. High	-
Additives	Med	Med
 Specialty materials 	?	?
Rare earth elements (others)	?	?
Coal* in construction materials *Not ash-related	V. High	V. High

Carbon Ore Companies in NAPP, for example:

- Calgon Carbon Corporation, along with its European operation, Chemviron Carbon, is a worldwide manufacturer and supplier of granular activated carbon treatment systems and value-added technologies. Moon Township, PA.
- Weaver Industries specializes in custom machined graphite, molding urethane, blown glass art, and electrodes. Denver, PA.
- Anthracite Industries supplies carbon and graphite products used in various industrial applications, including friction materials, lubricants, fuel cells, and cast metals. Sunbury, PA.
- CFOAM LLC produces coal-based carbon foam materials (high strength and heat/chemical resistant), including a graphitzed foam. Triadelphia, WV.

Other Critical Minerals

- Titanium, for example
 - Perryman Company
 - Melting facility, Coal Center, PA
 - Hot rolling mill and finishing and dedicated bar finishing facility, Houston, PA
 - Intermediate titanium processing facility, Frackville, PA
 - International Titanium Corp.
 - Grinding a variety of ingots, billets, blooms slabs, and forgings in all shapes and sizes, just outside of Pittsburgh, PA
 - TSI Titanium

PennState

Rolled and forged titanium round bar products, Derry, PA

- Tin, for example
 - Tin Technology & Refining LLC
 - Nonferrous metal recycler specializing in the refining of tin-based byproducts and residues, West Chester, PA
 - Nathan Trotter & Company
 - Largest manufacturer of tin and tin alloys in North America, Coatesville, PA

- Task 1.0 Project Management and Planning
 - Environmental Justice Targets
 - Economic Revitalization and Job Creation Targets
 - Environmental, Safety, and Health Analysis
- Task 2.0 Basinal Assessment of CORE-CM Resources
- Task 3.0 Basinal Strategies for Reuse of Waste Streams

- Task 4.0 Basinal Strategies for Infrastructure, Industries and Businesses
- Task 5.0 Technology
 Assessment, Development and Field Testing
 - Task 6.0 Technology Innovation Center
 - Task 7.0 Stakeholder Outreach and Education

Biological Recovery of Critical Minerals from Secondary Sources

Ecological benefits

PennState

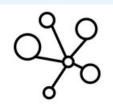
Fruit and leaves are important for birds, and flowers are important for pollinators

(Nafici, 2014; Webmaster, 2018; Sanchez, 2019; Lester, 2023)

- Pokeweed grew well in up to 70% of AMD soil.
- The accumulation of REEs in current set was low, potentially due to the low REE in the soil sources, pH or high P in the soil.
- Pokeweed significantly reduced the manganese content in the soil.
- Most REEs in pokeweed: Root> Mature leaves> Stem> Fruit
- Most REEs in dandelion: Mature leaves> Root

- Task 1.0 Project Management and Planning
 - Environmental Justice Targets
 - Economic Revitalization and Job Creation Targets
 - Environmental, Safety, and Health Analysis
- Task 2.0 Basinal Assessment of CORE-CM Resources
- Task 3.0 Basinal Strategies for Reuse of Waste Streams

- Task 4.0 Basinal Strategies for Infrastructure, Industries and Businesses
- Task 5.0 Technology Assessment, Development and Field Testing
- Task 6.0 Technology Innovation Center
- Task 7.0 Stakeholder
 Outreach and Education



PennState College of Earth and Mineral Sciences

Technology Innovation Center(s)

- Many ideas discussed with our Technical Operations Committees and Stakeholders
 - goal was to develop advanced technologies and make industry more competitive, take feedstocks with different characteristics, write a guideline in cookbook form, but OK to work on current technologies to minimize water use and make waste benign
 - data bank funded with state and federal money
 - development money needed; price matters; tariffs change the global markets/supply chains—look at macroeconomics
 - virtual center, a co-op with membership and coordination with some facilities
 - a center should be plug and play, a modular system
 - suggested a hub and spoke arrangement, a national pilot facility owned by the federal government and operated by a contractor, perhaps like the National Carbon Capture Center in Wilsonville AL. Can address proprietary tech and cost; possible need for regional centers

HUB AND SPOKE

PennState

- Task 1.0 Project Management and Planning
 - Environmental Justice Targets
 - Economic Revitalization and Job Creation Targets
 - Environmental, Safety, and Health Analysis
- Task 2.0 Basinal Assessment of CORE-CM Resources
- Task 3.0 Basinal Strategies for Reuse of Waste Streams

- Task 4.0 Basinal Strategies for Infrastructure, Industries and Businesses
- Task 5.0 Technology Assessment, Development and Field Testing
- Task 6.0 Technology
 Innovation Center
- Task 7.0 Stakeholder Outreach and Education

PennState College of Earth and Mineral Sciences

Stakeholder Outreach and Education

- Mineral resources workforce development needed across all commodity supply chains—exploration, mining, processing, materials, etc.
 Unskilled, skilled, and professional.
- Reach out to community colleges, retooling programs for other engineering graduates to enter the mineral resource industry
- Need support from many sources

- CANARY stakeholders' group has met ~quarterly
- Many meetings with
 industry (PA conventional
 oil & gas, for example),
 government (local, state,
 and federal officials), unions
 (meeting with UMWA),
 environmental groups
 (Sierra Club)

Ask Me Questions!

Acknowledgement US DOE CORE-CM Program DE-FE0032052

Colorado School of Mines, University of KY Virginia Tech, Tetra Tech

