

Direct Air Reactive Capture and Conversion for Utility-Scale Energy Storage (FWP-FEW0277): *Reactive CO₂ Capture to Produce Renewable Natural Gas*

Matthew M. Yung, NREL FECM Reactive Carbon Capture Project Review Meeting , Golden, CO January 18, 2024

Successful collaboration between National Labs (LLNL and NREL)

Fossil Energy and **Carbon Management**

Office of Science

Lawrence Livermore National Laboratory

Simon Pang

Melinda

Jue

Ellebracht

Wengin

Li

Alvina

Brandon

Folev

Aui

Sneha Akhade

Thomas

Ludwig

Hannah Goldstein

Matt

Yung

NREL-PI

Sawyer

Halingstad

Brittney Petel

Isabel

Shim

Mia Martinsen

Chae Martha Jeong-Potter Arellano-Treviño

RENEWABLE ENERGY LABORATORY

James Crawford

U.S. Greenhouse Gas Emissions by Economic Sector

The Opportunity: Decarbonization of natural gas can have an impact equivalent to curtailing all transportation emissions.

Importance of Natural Gas in U.S. Energy Production

35 miles of pipeline from Douglas to Casper Wyoming

www.EIA.gov

Natural Gas Leads U.S. Energy Production

- Deployment of renewable wind and solar increases percentage of renewable fuels
- Existing natural gas (methane) infrastructure for distribution and power generation can be utilized
- Renewable natural gas (RNG) allows
 a method for grid-scale energy
 storage
 - Solves intermittency issues
 - Chemical storage of excess renewable electricity

We want to stable, responsive, low-carbon energy

Intermittent wind and solar.

Mismatched supply/demand can result in grid instability.

Natural gas plays an important role to mitigate intermittency issues in the transition to renewables. Existing CH_4 distribution network allows CO_2 capture and conversion to easily integrate with existing assets.

Natural gas pipelines

Natural gas power plant

https://www.everycrsreport.com/reports/R45239.html

There is urgency to decarbonize the natural gas industry!

How?

Converting CO₂ to CH₄ (RNG) via methanation (Sabatier reaction)

 $CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O$

 $\Delta H = -165.0 \text{ kJ/mol}$

Why?

- Natural gas grid decarbonization
- Low-cost solution for seasonal and excess renewable electricity storage in a carbon-neutral fuel
- Leverage existing natural gas infrastructure

Reactive Capture and Conversion (RCC) of CO₂ on a Dual Functional Material (DFM)

TEA Comparing Process Configurations (Separate DAC + Methanation) vs. RCC

RCC has lower CAPEX, lower energy consumption and higher energy efficiency than separated DAC + methanation process.

- 30-60% less CAPEX for reactive capture
- **30-80% decreased energy consumption** (vs. DAC and methanation)
- Sorbent regeneration happens simultaneously with the reaction. Thus, no additional heat is required for sorbent regeneration.

Alvina Aui

Process assumptions: 1 million tons CO₂ per year, 346 k-tons CH₄ per year

Sensitivity Analysis on RNG Production Cost

#2

Key factors driving RNG price can be used to identify R&D activities

Renewable electricity can significantly affect the carbon footprint of Reactive Capture

Key TEA/LCA takeaways

Translating Theory to Practice

- RCC to RNG looks good on paper, but can it be accomplished?
 - Analysis shows economic and environmental potential for the intensified process
- RCC Reactive Capture and Conversion of CO₂

- DFM (Dual-Functional Material)
 - Materials with capture and catalyst properties

Objective: Develop an efficient, durable, and commercially-viable process for RCC synthesis of renewable natural gas (RNG) from CO₂.

"In theory there is no difference between theory and practice - in practice there is" (Yogi Berra)

Dual Functional Materials (DFMs)

Combine both functions to make a DFM

Project Phase 1: Capture Agent Amine-based CO₂ sorbents

Adsorption strength, capacity, and reactivity of CO₂ are linker dependent

Investigation of tethered amines

- High specific storage capacity
- Rapid adsorption/desoprtion
- Minimal heat required for desorption (Type 1)
- Mechanism of bound carbamate may allow low temperature conversion (Type 2)

Reactive intermediates may change when sorbents are present

Spectroscopy at during reactions

- High pressure, high temperature, reactive gases
- identify surface intermediates, reaction mechanisms

Project Phase 1: Catalysis

Literature on light-off data for methanation (Ru/TiO₂ material)

Observations

- Ru is active at lower temperature than Ni
- Low light-off temperature is desired/vital
- Support: TiO₂ gives the lowest T₅₀
- Reduction temp is crucial
 - Should be less than 400°C High temps results in agglomeration
- Phase of TiO₂ is important

Anatase gave low activity Rutile and mixture gave high activity

*Ru/TiO*₂ *methanation catalysts*

Catalyst	wt (%)	T ₅₀	T _{red}	S_{CH4}	P _{rxn}	H	l ₂ :0	CO ₂						
Ru/CeO ₂	0.9	290	350	100	atm	4								
Ru/CeO ₂	2.6	250	350	100	atm	4								
Ru/CeO ₂	3.7	290	350	100	atm	4								
Ru/CeO ₂	1.8	260	500	100	atm	4								
Ru/CeO ₂ /Al ₂ O ₃	1.8	275	500	100	atm	4								
Ru/CeO ₂	5.0	440	500	100	atm	4								
Ru/CeO ₂	3.0	219	400	100	atm	4								
Ru/CeO ₂	3.0	234	400	100	atm	4								
Ru/CeO ₂	3.0	249	400	100	atm	4								
Ru/CeO ₂	1.0	231	400	100	atn			Duk			n lia	ht a		
Ru/CeO ₂	6.0	200	400	100	atn			Ru n	as io	we	riig	πιο		
Ru/CeO ₂	13.0	204	400	100	atn		n	hetha	anati	on	thar	n otl	her	
Ru/TiO ₂	0.8	150	n/a	100	atn		••		/					
Ru/TiO ₂	0.8	175	500	100	atn		m	etals	; (Rh <i>,</i>	Pt	, Pd <i>,</i>	Ni,	Co)	
Ru/TiO ₂	0.8	200	700	100	atn									
Ru/TiO ₂	0.8	500+	800	100	atr	5		•			•••••			
Ru/TiO ₂ (A)	2.0	500+	300	100	atr	4.5	1					••••	• -	
Ru/TiO ₂ (R)	2.0	230	300	100	atr	4	-	•••• Ee	quilibrium	i i			•	
Ru/TiO ₂ (P25)	2.0	230	300	100	atr	3.5	-	•••• R	u/Al2O3			1		
≺u/Al ₂ O ₃	3.0	377	400	90	atr	0 2 3	-	•• = • R	h/Al2O3			¥ /		
Ru/Al ₂ O ₃	3.0	402	400	100	atr	2.5	-	•• 🖬 • Pi	t/Al2O3		1	- 2		
Ru/Al ₂ O ₃	3.0	352	400	100	atr		_	•• ▲ •• Pe	d/Al2O3		*		۰	
Ru/Al ₂ O ₃	10.0	215	320	100	atr	5 <u></u>		\$- N	i/Al2O3		1.	10	1	
Ru/Al ₂ O ₃	10.0	235	320	100	atr	5 ^{1.5}	1	•••• C	o/Al2O3		1 .	4	1	
Ru/Al ₂ O ₃	10.0	255	320	100	atr	1	1		•		6 7	1	• 	
Ru/Al ₂ O ₃	10.0	275	320	100	atr	0.5	-			1			1. Jan 19	
Ru/Al ₂ O ₃ /Monolith	10.0	250	320	100	atr	0	_	0			0-0-0		.	
							0	50	100	150	200	250	300	35
					L		Temperature (°C)							
										· ·	· ·	<i>.</i>		

M. Duyar et al. 2016 https://doi.org/10.1016/j.jcou.2016.05.003

J.M. Crawford et al., 2023 https://doi.org/10.1016/j.apcata.2023.119292

Phase 1 RCC: Combine the best sorbent and catalyst Challenge: Materials mismatch on amine-based DFM

Process and Materials Considerations: Coupling desorption strength with reaction light-off

Objective: Develop an efficient, durable, and commercially-viable process for RCC synthesis of renewable natural gas (RNG) from CO₂.

Sorbent strength dramatically impacts process yields

Facile CO_2 release (amine) \rightarrow low product yield

Stronger CO_2 binding (alkali) \rightarrow high product yield

Development of DAC and RCC for RNG Process on Ni and Ru + alkali DFMS

Ni based DFMs not well-suited for oxidizing environments (Ni²⁺ \leftrightarrow Ni⁰)

Development Opportunities:

i) materials development (cost, stability, selectivity, productivity, less CO₂ slip)

https://doi.org/10.1016/j.jcou.2019.03.009

ii) process development (loading procedure, heating, effects of impurities, etc.)

~40%

8

https://doi.org/10.1016/j.apcatb.2021.120990

9

10

 CO_2 slip

Miles to go before I (we) sleep... (Robert Frost)

A process and materials problem. The Challenge: Mi Not Fra between capture and cataly operating windows and reaction conditions.

A process and materialsbased solution.

The Opportunity: Efficiently convert all captured CO₂ into products through rationale process and materials design of CO₂ capture/release properties.

Lessons Learned: Material must asons"... reaction conditions, temperatures, and n redox cycling (switches from tive to reductive environments)

> **to be Done:** Develop the rial and process based on iples of the: "<u>The Four C's:"</u> Capture Catalysis

- 3) Carrier (support/confinement)
- 4) Controls/process conditions

Technical Approach: LLNL and NREL Team and "The Four C's"

Capture - CO₂ adsorption/desorption Understand/tailor sorbent for target product

- Which alkali/alkaline/amine sorbent?
- What sorbent loading?
- How to use it efficiently?

Catalysis - Metal/catalytic chemistry

- Loadings and ratios of catalyst (Ru) and sorbent?
- Synthesis conditions (precursors, calcination temperature/time, etc.)

Capture

Catalysi

Controls

Carrier – Support interactions with catalytic and adsorption components, and potential confinement effects on reactants

Which support? (and various flavors of supports, e.g. TiO₂, SiO₂, zeolites)

Controls - Process conditions

Optimize yields and process parameters to reduce CO_2 slip, utilize H_2 , and drive product selectivity

- Effect of CO₂ concentration
- Ramp rate
- H₂ pressure
- Loading (CO₂ uptake) temperature profile

Capture: Evaluate different sorbents on a Ru-DFM

NREL Controls

Capture/Carrier: Effect of Na loading on CO₂ uptake and alkali efficiency (on different TiO₂ supports)

CO₂ desorption profiles of varying Na content on different TiO₂ supports

Catalyst/Carrier: Synthesis via Incipient Wetness

Capture

James

Mia

Mat Rasmussen

Crawford

Sawyer

Halingstad

Isabel Shim Martinsen

Researcher Training Internships

- Triple Na impregnation (10 wt%)
- 10 h calcination at 400°C
- Single Ru impregnation (1wt%)
- 3 h calcination at 400°C

Supports: TiO₂ (P25, P90, M311 (Hombikat), JM spheres, Saint Gobain), Al₂O₃, CeO₂, SiO₂ (SBA-15, mesoporous, Saint Gobain), Zeolites

Effect of synthesis on RCC performance and properties

- **Experiments informed synthesis** procedure(s)
- Capture agent(s)
- Support(s)
- Impregnation order of catalyst/capture agents
- Ratios and loading of catalyst and capture agent
- Calcination temperature
- Precursor(s)

Controls Higher CO₂ slip 5% CO₂ 670 ppm CO₂ 1.4E-07 350 1% CO₂ 1.2E-07 Effect of CO₂ Adsorption Concentration 300 CH₁ on Methane Production during RCC over Ru-Na Production (a.u.) 6 0.0000001 O_2 250 5 Mass Spec Signal (a.u.) ΰ (Deg 4 8E-08 200 CH₄ Successful demonstration of ~100x 3 **CH**_₄ reduction in CO₂ adsorption pressure 6E-08 150 Reactor 2 (5% down to 0.067%) Methane 1 4E-08 100 Temp. Temp. 0% 1% 2% 3% 4% 5% 2E-08 50 **CO**₂ CO. **CO₂** Adsorption Pressure 0 56500 56000 57000 57500 58000 58500 59000 21500 21000 18500 19000 19500 20000 20500 98000 98500 99000 99500 100000 100500 101000

Controls: Effect of CO₂ adsorption concentration

Increase CO₂ adsorption pressure:

Constant methane production •

Note: Response factor for CH₃ (signal/vol %) decreases during the experiment

Capture

Control/Process conditions impact RCC performance:

"Hot" vs. "Cold" CO₂ loading

<u>Cold Load:</u> <u>CO₂ adsorption after cooling</u>

<u>CO₂ adsorption during cooling</u>

Hot Load:

Capture

Potential Benefits

- Reduced cycle time
- Increased CH₄ yield
- Decreased CO₂ slip
- Higher CH₄ purity

Controls: Evaluating process for CO₂ loading on Ru-Na/TiO₂ (Hombikat)

Carrier: How do different TiO₂ supports affect Ru-Na RCC process?

Highlights and Future Work

• TEA/LCA process modeling shows:

- Intensified RCC process reduces CAPEX and compared to separated (DAC + methanation)
- 95% reduction in GHG emissions using renewable electricity
- RNG cost is on par with anaerobic digestion of solid waste (sludge, manure)
- Experimental testing resulted in:
 - RCC process using a Ru/Na/TiO₂ catalyst/DFM developed
 - 85-95% yield of bound CO_2 to CH_4
 - Stable performance for five cycles RCC
 - Methane yield independent of CO₂ loading conc.
 - Process conditions indicate increase yield and reduced CO₂ slip using a "hot load"
 - Stability testing and additional process testing should be performed
 - Characterization, spectroscopy, and testing to understand reaction mechanisms

Acknowledgements: Thank you!

Fossil Energy and **Carbon Management**

SULI Internship Program

Office of Science

Lawrence Livermore National Laboratory

Melinda

Jue

Ellebracht

Wenqin

Li

Brandon

Folev

Alvina

Aui

Akhade

Thomas

Ludwig

Hannah Goldstein

Michael Griffin

James Crawford

Sawyer

Brittney Petel

Martha Chae Jeong-Potter Arellano-Treviño

ATIONAL RENEWABLE ENERGY LABORATORY

Matt Yung

Isabel Shim

Mia

Martinsen