

Photo from its from its

Direct Air Reactive Capture and Conversion for Utility-Scale Energy Storage (FWP-FEW0277): **Reactive CO₂ Capture to Produce Renewable** *Natural Gas*

Matthew M. Yung, NREL FECM Reactive Carbon Capture Project Review Meeting , Golden, CO January 18, 2024

Successful collaboration between National Labs (LLNL and NREL)

Fossil Energy and Carbon Management

Office of Science

Lawrence Livermore
 Mational Laboratory

Simon Pang

Melinda Jue

Wenqin Li

Brandon Foley

Ellebracht Aui

Akhade

Hannah

Michael Griffin

Sawyer Halingstad

James Crawford

Petel

Shim

Mia

Martinsen

Martha Arellano-Treviño Jeong-Potter

Ludwig

Goldstein

Chae

NREL | 2

Matt Yung

U.S. Greenhouse Gas Emissions by Economic Sector

The Opportunity: Decarbonization of natural gas can have an impact equivalent to curtailing all transportation emissions.

35% of all emissions is due to natural gas consumption

Importance of Natural Gas in U.S. Energy Production

35 miles of pipeline from Douglas to Casper Wyoming

www.EIA.gov http://www.intercon-const.com/projects/experience/

Natural Gas Leads U.S. Energy Production

- **Deployment of renewable wind and solar increases percentage of renewable fuels**
- **Existing natural gas (methane) infrastructure for distribution and power generation can be utilized**
- **Renewable natural gas (RNG) allows a method for grid-scale energy storage**
	- **Solves intermittency issues**
	- **Chemical storage of excess renewable electricity**

We want to stable, responsive, low-carbon energy

Intermittent wind and solar.

Mismatched supply/demand can result in grid instability.

Natural gas plays an important role to mitigate intermittency issues in the transition to renewables.

Existing CH4 distribution network allows CO2 capture and conversion to easily integrate with existing assets.

[Natural gas pipelines](https://www.forbes.com/sites/brentanalexander/2020/08/22/california-blackouts-show-natural-gas-is-needed-for-a-stable-grid-for-now/?sh=9a7665d2e91d) Matural gas power plant

https://www.everycrsreport.com/reports/R45239.html

There is urgency to decarbonize the natural gas industry!

How?

Converting $CO₂$ to CH₄ (RNG) via methanation (Sabatier reaction)

∆*H* = −165.0 kJ/mol

 $CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O$

Why?

- Natural gas grid decarbonization
- Low-cost solution for seasonal and excess renewable electricity storage in a carbon-neutral fuel
- Leverage existing natural gas infrastructure

Reactive Capture and Conversion (RCC) of $CO₂$ on a Dual Functional Material (DFM)

TEA Comparing Process Configurations (Separate DAC + Methanation) vs. RCC

RCC has lower CAPEX, lower energy consumption and higher energy efficiency than separated DAC + methanation process.

- **30-60% less CAPEX for reactive capture**
- **30-80% decreased energy consumption** (vs. DAC and methanation)
- Sorbent regeneration happens simultaneously with the reaction. Thus, no additional heat is required for sorbent regeneration.

Alvina Aui

Process assumptions: 1 million tons $CO₂$ per year, 346 k-tons $CH₄$ per year

Sensitivity Analysis on RNG Production Cost

#2

Key factors driving RNG price can be used to identify R&D activities

Renewable electricity can significantly affect the carbon footprint of Reactive Capture

Key TEA/LCA takeaways

Translating Theory to Practice

- **RCC to RNG looks good on paper, but can it be accomplished?**
	- *Analysis shows economic and environmental potential for the intensified process*
- **RCC - Reactive Capture and** Conversion of CO₂

- **DFM (Dual-Functional Material)**
	- Materials with capture and catalyst properties

Objective: Develop an efficient, durable, and commercially-viable process for RCC synthesis of renewable natural gas (RNG) from $CO₂$.

"In theory there is no difference between theory and practice - in practice there is" (Yogi Berra)

Dual Functional Materials (DFMs)

Combine both functions to make a DFM

Project Phase 1: Capture Agent Amine-based CO₂ sorbents

Adsorption strength, capacity, and reactivity of CO₂ are linker dependent

Investigation of tethered amines

- High specific storage capacity
- Rapid adsorption/desoprtion
- Minimal heat required for desorption (Type 1)
- Mechanism of bound carbamate may allow low temperature conversion (Type 2)

In-situ DRIFTS during RCC

Reactive intermediates may change when sorbents are present

Spectroscopy at during reactions

- High pressure, high temperature, reactive gases
- identify surface intermediates, reaction mechanisms

Project Phase 1: Catalysis

Literature on light-off data for methanation (Ru/TiO₂ material)

Observations

- Ru is active at lower temperature than Ni
- Low light-off temperature is desired/vital
- Support: TiO₂ gives the lowest T_{50}
- Reduction temp is crucial
	- Should be less than 400°C High temps results in agglomeration
- Phase of TiO₂ is important

Anatase gave low activity Rutile and mixture gave high activity

$Ru/TiO₂$ methanation catalysts

M. Duyar et al. 2016<https://doi.org/10.1016/j.jcou.2016.05.003>

J.M. Crawford et al., 2023 <https://doi.org/10.1016/j.apcata.2023.119292>

Phase 1 RCC: Combine the best sorbent and catalyst Challenge: Materials mismatch on amine-based DFM

Process and Materials Considerations: *Coupling desorption strength with reaction light-off*

Objective: Develop an efficient, durable, and commercially-viable process for RCC synthesis of renewable natural gas (RNG) from $CO₂$.

Sorbent strength dramatically impacts process yields

Facile CO₂ release (amine) \rightarrow low product yield Stronger CO₂ binding (alkali) \rightarrow high product yield

Development of DAC and RCC for RNG Process on Ni and Ru + alkali DFMS

Development Opportunities:

- i) materials development (cost, stability, selectivity, productivity, less $CO₂$ slip)
- ii) process development (loading procedure, heating, effects of impurities, etc.)

Miles to go before I (we) sleep... (Robert Frost)

A process and materials problem. The Challenge: Mist between capture and cataly operating windows and reaction conditions.

A process and materialsbased solution.

The Opportunity: Efficiently convert all captured $CO₂$ into products through rationale process and materials design of $CO₂$ capture/release properties.

Lessons Learned: Material must /reaction conditions, temperatures, and n redox cycling (switches from tive to reductive environments)

> **k to be Done:** Develop the rial and process based on ples of the: "**The Four C's:" Capture** *<u>Catalysis</u>*

- 3) Carrier (support/confinement)
- 4) Controls/process conditions

Technical Approach: LLNL and NREL Team and "The Four C's"

Capture - CO2 adsorption/desorption Understand/tailor sorbent for target product

- Which alkali/alkaline/amine sorbent?
- What sorbent loading?
- How to use it efficiently?

Catalysis - Metal/catalytic chemistry

- Loadings and ratios of catalyst (Ru) and sorbent?
- Synthesis conditions (precursors, calcination temperature/time, etc.)

Capture

Catalyst

Controls

Carrier – Support interactions with catalytic and adsorption components, and potential confinement effects on reactants

Which support? (and various flavors of supports, e.g. TiO₂, $SiO₂$, zeolites)

Controls - Process conditions

Optimize yields and process parameters to reduce $CO₂$ slip, utilize H₂, and drive product selectivity

- Effect of $CO₂$ concentration
- Ramp rate
- $H₂$ pressure
- Loading (CO₂ uptake) temperature profile

Capture: Evaluate different sorbents on a Ru-DFM

Capture/Carrier: Effect of Na loading on $CO₂$ uptake and alkali efficiency (on different TiO₂ supports)

 $CO₂$ desorption profiles of varying Na content on different TiO₂ supports

Catalyst/Carrier: Synthesis via Incipient Wetness

Capture

Rasmussen

Mia

Sawyer

Isabel Shim Martinsen

Researcher Training Internships

- Triple Na impregnation (10 wt%)
- **10 h calcination at 400°C**
- Single Ru impregnation (1wt%)
- **3 h calcination at 400°C**

Supports: \overline{TO}_2 (P25, P90, M311 • Precursor(s) (Hombikat), JM spheres, Saint Gobain), Al_2O_3 , CeO₂, SiO₂ (SBA-15, mesoporous, Saint Gobain), Zeolites

Effect of synthesis on RCC performance and properties

- Experiments informed synthesis procedure(s)
- Capture agent(s)
- Support(s)
- Impregnation order of catalyst/capture agents
- Ratios and loading of catalyst and capture agent
- Calcination temperature
-

Ğ **Controls** • Higher CO₂ slip 5% CO₂ **670 ppm CO₂** 1% CO₂ 1.4E-07 350 1.2E-07 **Effect of CO₂ Adsorption Concentration** 300 $CH₄$ **on Methane Production during RCC over Ru-Na** Production (a.u.) 6 0.0000001 \bullet CO₂ 250 5 Mass Spec Signal (a.u.) T **Methane Production (** (Deg 4 8E-08 200 CH_4 **CH₄ CH**₄ **CH**₄ **CH**₄ **CH**₄ **CH**₄ **CH**₄ **CH**₄ **CH**₄ Temp **Successful demonstration of ~100x** 3 6E-08 150 Reactor 2 **(5% down to 0.067%)**1 4E-08 100 Temp. $\begin{array}{|c|c|c|c|c|c|}\hline \text{Temp.} & \text{I} &$ **0% 1% 2% 3% 4% 5%** 2E-08 50 **CO₂ CO₂ CO₂

Adsorption Pressure

CO₂

CO** Ω 56000 56500 57000 57500 58000 58500 59000 20500 21000 21500 18500 19000 19500 20000 98000 98500 99000 99500 100000 100500 101000

Controls: Effect of $CO₂$ adsorption concentration

Increase CO₂ adsorption pressure:

• **Constant methane production**

Note: Response factor for $CH₃$ (signal/vol %) decreases during the experiment

Capture

rriel

Control/Process conditions impact RCC performance:

"Hot" vs. "Cold" $CO₂$ loading

Cold Load: CO2 adsorption *after* **cooling**

CO2 adsorption *during* **cooling**

Hot Load:

Capture

- Reduced cycle time
- Increased $CH₄$ yield
- Decreased $CO₂$ slip
- Higher $CH₄$ purity

Controls: Evaluating process for $CO₂$ loading on Ru-Na/TiO₂ (Hombikat)

Carrier: How do different TiO₂ supports affect Ru-Na RCC process?

Highlights and Future Work

• **TEA/LCA process modeling shows:**

- Intensified RCC process reduces CAPEX and compared to separated (DAC + methanation)
- 95% reduction in GHG emissions using renewable electricity
- RNG cost is on par with anaerobic digestion of solid waste (sludge, manure)
- **Experimental testing resulted in:**
	- $-$ RCC process using a Ru/Na/TiO₂ catalyst/DFM developed
	- $-$ 85-95% yield of bound CO₂ to CH₄
	- Stable performance for five cycles RCC
	- Methane yield independent of $CO₂$ loading conc.
	- Process conditions indicate increase yield and reduced $CO₂$ slip using a "hot load"
	- Stability testing and additional process testing should be performed
	- Characterization, spectroscopy, and testing to understand reaction mechanisms

Controls

Acknowledgements: Thank you!

Fossil Energy and Carbon Management

SULI Internship Program

Office of Science

Lawrence Livermore

National Laboratory

Simon Pang

Melinda Jue

Wenqin Li

Ellebracht

Alvina Aui

Brandon Foley

Sneha Akhade

Ludwig

Hannah Goldstein

Matt Yung

Michael Griffin

Rasmussen

ONAL RENEWABLE ENERGY LABORATORY

Sawyer Halingstad

Shim

Mia

Martha Arellano-Treviño Chae Jeong-Potter

Martinsen

