----twelve

Reactive Carbon Capture Workshop

January 18, 2024

quick intro

PhD, Electrochemical Engineering

Experimental and computational studies of CO₂ electrocatalysis for multicarbon products in GDE systems

•

CO₂-to-ethylene electrolyzer pilot plant in Calgary connected to CO₂ capture unit at an NG power plant

- Northwestern University
- Scientific Partnership Development
 - Led grant writing and stakeholder engagement to successfully raise \$3.9M for the Midwest Nuclear Direct Air Capture (MINDAC) Hub

Josh Wicks, PhD

-twelve

Technical Program Manager, Strategy

- Techno-Economic Analysis (TEA)
- Lifecycle Assessment (LCA)
- Using the above analyses to inform company strategy

transforming global CO₂ emissions

into a trillion-dollar opportunity

we have transformed CO₂ into products for flagship customers

E-Jet®: world's first jet fuel made from CO_2 electrolysis

U.S. AIR FORCE

world's first CO2Made® ingredients for Tide world's first **CO2Made®** auto parts world's first **CO2Made®** sunglass lenses

Mercedes-Benz

PANGAIA^{IAB} × twelve

why power-to-liquids sustainable aviation fuel (SAF)?

- PtL technologies use less land, less water, and have less lifecycle emissions than fossil jet fuel and most biomass-derived alternatives
- Waste and residue oils and fats that are feedstocks for HEFA are expected to face a supply crunch in 2027
- PtL fuels are necessary for long-term supply of SAF

transforming CO_2 into E-Jet®

THE METRICS THAT MATTER FOR COST-EFFECTIVE CO₂ ELECTROLYSIS

3. CURRENT DENSITY

The amount of current per electrode area needed to convert CO_2 to CO and other hydrocarbons.

1. FARADAIC YIELD The percent of the electrical current through the system that goes to producing the desired product.

4. LIFETIME

How long the electrochemical reactor runs without a loss in energy efficiency or current density.

2. VOLTAGE EFFICIENCY

The thermodynamic minimum voltage divided by the actual voltage.

5. CO₂ UTILIZATION

How much of the input CO_2 to the reactor is converted to product in a single pass.

Improving technical performance metrics that dictate system OpEx and CapEx

commercialization (build - own - operate)

Twelve E-Jet facility began construction in Moses Lake, WA in summer 2023

Signed offtake agreements with Alaska Airlines, Microsoft, and Shopify our investors and partners

Stanford University

Raised over \$200M since we were founded in 2016, now > 250 people

Opportunities and challenges for reactive capture (electrochemical)

CO₂ Point Sources (tonnes CO₂e)

opportunity: geographic flexibility for reactive capture

- A suitable overlap of CO₂ point sources and areas with low-carbon renewable electricity does exist, but it is competitive.
- DAC reactive capture decouples these requirements, providing a major opportunity to deploy in areas not otherwise possible
- Clear alignment with GREENWELLS program and enables a future outlook where all the low-hanging-fruit point sources have been utilized

challenge: milestones along a roadmap

- The motivations and goals of reactive capture are clear
- However, there is an abundance of pathways, possible products, technologies, etc but deployment of climatetech is time-bound
 - What are the intermediate milestones to get a given technology to deployment in this space (go/no-go decision points, technical milestones vs technical goals)?
- Different answers for different technologies

twelve

questions?