Reactive CO₂ Capture via Inorganic Carbonate Crystallization

2023, Phase 1, Release 2 FOA# DE-FOA-0002903 Topic# C56-25a

Award # DE-SC0023971

Carbon To Stone Project Review Meeting 1-17-2024

Sravanth Gadikota Co-Founder & CEO

Urgent Need for Transformative Solutions

for carbon management and resource recovery

Carbon Dioxide Emissions

Flue Gas Capture

CO₂ Removal from Air

Billion Tonnes/Year alkaline industrial residue generated

Steel Slag

Mining Ore/Tailings

Aluminum Dross

Coal Fly Ash

CTS

Cement Kiln Dust

Produced Water

Let's Close The Loops, Together.

Carbon To Stone's Innovative Technology Transforms Residues to Value

repurposed reused reevaluated

From Direct Air Capture or Point Source Capture, into stone.

From Industrial Residues, into valuable resources.

Current Methods

Encounter Environmental & Economic Limitations

leading to a less sustainable and economically taxing operation

Our Patented Platform Technology

Drives Modular, Customizable Use

Technical Approach for Reactive Capture

Single-Step capture, conversion, and storage of CO_2 as Ca- or Mg-carbonate at 25-75 °C

Solvent selectively increases the concentration of dissolved CO_2 while being continuously regenerated as solid carbonates are precipitated

Schematic representation of CO_2 capture, and carbonate formation, using Carbon To Stone's single-step process.

Characterized commercially relevant flue gases

Component	Natural Gas fired boilers	Oil fired boilers	Coal fired boilers	Cement Kiln
CO ₂	7-10%	11-13%	11%	22.4 %
N ₂	78-80%	78-80%	76%	68.1 %
O ₂	2-3%	2-6%	6%	2.3%
H ₂ O			6%	7.2%
Ar			1%	
NO _x			1%	

Following flue gas compositions are selected to run the initial experiments.

Component	Gas 1	Gas 2	Gas 3	Gas 4	Gas 5	Gas 6	Gas 7	Gas 8
CO ₂	100%	80 %	60 %	40 %	20 %	15 %	10 %	5 %
N ₂	0 %	20 %	40 %	60 %	80 %	85 %	90 %	95 %

 The effect of impurities (NO_x, SO_x & O₂) in the flue gas stream will be tested with the optimized reaction parameters (> 80% extent of carbonation).

Developed Initial Reactor Configuration

Manage Variance in Feedstock Compositions (Flue Gas, Alkaline Residues)

Enhance Solvent Recyclability

ノ

Increase Usability of Carbonates

Let's close the loops, together.

Sravanth Gadikota | CEO sgadikota@carbontostone.com

Acknowledgments

