

Integrated (Reactive) Capture of CO₂ and Conversion to Methanol and Methane

G. K. Surya Prakash

Loker Hydrocarbon Research Institute Department of Chemistry University of Southern California Los Angeles, CA 90089-1661

Reactive Carbon Capture Project Review Meeting National Renewable Energy Laboratory Golden, CO January 17-18, 2024

Methanol as a fuel and feedstock: The Methanol Economy

2

WILEY-VCH

George A. Olah, Alain Goeppert, and G.K. Surya Prakash

Beyond Oil and Gas: The Methanol Economy

Third, Updated and Enlarged Edition

Carbon Footprint of Methanol

IRENA AND METHANOL INSTITUTE (2021),Innovation Outlook : Renewable Methanol,S. Kang, F. Boshell, A. Goeppert, G. K. S. Prakash, I. LandälvInternational Renewable Energy Agency, Abu Dhabi.

Carbon Footprint of Methanol

In process, CO2 is extracted from the smoke gas and recycled in the methanol synthesis - gives a 15-20% CO2 reduction

E-METHANOL: Allows a 95% CO2 reduction

BIOMETHANOL: Biomethanol gives between 50-85% (depending on feedstock and willingness to invest)

Source: Advent Technologies

Geothermal Methanol from CO₂

Methanex and Geely are the major share holders

Integrated Carbon Capture and Conversion (ICCC)

Tandem Hydrogenation of Captured CO₂ in Ethylene Glycol

R. Sen, A. Goeppert, S. Kar, G. K. S. Prakash, J. Am. Chem. Soc., **2020**, 10, 4544-4549.

Tandem Hydrogenation of Captured CO₂ in Ethylene Glycol

- Amine-free system for integrated CO₂ capture and conversion to methanol has been developed.
- Ethylene glycol + KOH mediates the hydrogenation of the captured CO₂ most efficiently.
- Low temperature regeneration of hydroxide base has been demonstrated.
- The partial loss of the hydroxide is due to in-situ formation of carboxylates from the solvent alcohol.

ACS Publications

R. Sen, A. Goeppert, S. Kar, G. K. S. Prakash, J. Am. Chem. Soc., **2020**, 10, 4544-4549.

One-pot process converts CO₂ captured from the air into methanol

Scientists use an alkali hydroxide-based system to turn carbon dioxide into a carbon-neutral fuel

by Janet Pelley, special to C&EN

March 11, 2020 | A version of this story appeared in Volume 98, Issue 10

A new one-pot process converts CO_2 from air into methanol at moderate temperatures using a solution of potassium hydroxide in ethylene glycol, hydrogen, and a ruthenium catalyst.

nnual carbon dioxide emissions surged to more than 36 billion metric tons last year, causing climate warming and ocean acidification. Capturing some of that CO₂ and then converting it into methanol—an alternative transportation fuel and feedstock for chemical synthesis—could be one way to help keep those levels in check. Now, researchers have combined the capture and conversion steps into one continuous process that uses less energy than current methods (*J. Am. Chem. Soc.* 2020, DOI: **10.1021/jacs.9h12711**).

https://cen.acs.org/environment/greenhousegases/One-pot-process-converts-CO₂/98/i10

Liquid Phase CO₂ Hydrogenation to Methanol

✓ Efficient and recyclable system with methanol synthesis (yields ~ 90%)

✓ Hydrogenation of CO_2 captured from air with methanol yields > 90%.

(using PEHA or KOH)

✓ Relatively low operating temperatures: 170-200 °C.

 \checkmark Ethylene glycol enhances CO₂ conversions by 120%.

R. Sen, C.J. Koch, V. Galvan, N. Entesari, A. Goeppert, G.K.S. Prakash, J. CO₂ Utilization, **2021**, 54, article 101762.

maintained for five cycles.

Unpublished

Figure 3. Recycling of solution.

Z. Suhail, C.J. Koch, A. Goeppert, G.K.S. Prakash, Unpublished

Methane Production from Carbonates with Ni/Al₂O₃ Catalysts

Figure 5. Recycling study with Ni/CaAl₂O₄ catalyst

Scheme 3. Leaching characteristics of $CaAl_2O_4$ in the presence of potassium carbonate

C. J. Koch, V. Galvan, A. Goeppert, G. K. S. Prakash, *Green Chem.*, **2023**, 25, 1803-1808.

Figure 7. Recycling Experiment utilizing 5%Ru/Al₂O₃

Table 2. Recycling Experiment utilizing 5%Ru/Al₂O₃

Cycle	CO ₂ captured (mmol)	Methane produced (mmol)	Base regenerated (%)	Activity maintained (%)
1	5	5	100	-
2	5	1.5	30	30
3	1.5	0.33	6	6
4	0.33	0	0	0

Figure 8. ${}^{13}C-K_2CO_3$ experiment and its conversion to ${}^{13}C-Methane$ [a] gas mixture after reaction with ${}^{13}C-K_2CO_3$ [b] ${}^{1}HNMR$ of pure ${}^{13}CH_4$, [c] ${}^{1}HNMR$ of ${}^{12}CH_4$.

C. J. Koch, Z. Suhail, A. Goeppert, G. K. S. Prakash, *ChemCatChem*, **2023**, 15, e202300877.

Scheme 5. Phosphate salts reacting with alumina to form aluminum phosphate.

C. J. Koch, A. Algaratnam, A. Goeppert, G. K. S. Prakash, *ChemCatChem*, **2023**, 15, e202300877.

Lanthanide Promoters for improved catalytic performance

Figure 12. Different metal loadings of Ni and Yb compared to 5%Ru/Al₂O₃ catalyst at varying times.

C.J. Koch, Z. Suhail, A. Algaratnam, M. Coe, A. Goeppert, G.K.S. Prakash, Unpublished

Acknowledgements

The late George A. Olah	Marshall Smart	John-Paul Jones			
Alain Goeppert	Anthony Atti	Fredrick Krause			
Sri Narayan	Bo Yang	Marc Iuliucci			
Robert Aniszfield	Federico Viva	Dean Glass			
Carlos Colmenares	Jothi Kothandaraman	Amanda Baxter			
Thomas Mathew	Laxman Gurung	Anushan Alagaratnam			
Patrice Batamack	Sayan Kar	Zohaib Suhail			
Sergio Meth	Raktim Sen	Vicente Galvan			
Suresh Palale	Miklos Czaun	Huong Dong			
Nazanin Entessari	Hang Zhang	Christopher J. Koch			
USC-Loker Hydrocarbon Research Institute					

NSF, US Dept. of Energy (DOE), DARPA, ARPA-E