Compact and high throughput modular unit for carbon capture on ships

Leading organization:

<u>Wei Liu</u>, Mitch Odinak, Bang Xu Molecule Works Inc. Richland, WA 99354 Email: wei.liu@moleculeworks.com

Participating Organization:

Jian Liu Pacific Northwest National Lab, Richland, WA 99352

Presented at FECM 2024 meeting, Pittsburgh, PA

Aug. 8th, 2024

Develop basic process design and conduct feasibility study of the adsorption and heat exchange (AHX) capture unit for CO_2 capture on ships at flue gas exhaust rate of 700 kg/min with two CO_2 disposal methods:

- Onboard storage of liquified CO₂
- Onboard electrochemical conversion of CO₂ back to oxygenated fuels.

Molecule Works' proprietary adsorption and heat exchange (AHX) contactor for low-cost CO₂ capture

Adsorption and heat exchange (AHX) plate of high adsorbent loading (g/cm²) and high thermal conductivity

Scaleup by increasing number of unit AHX cells in 3 dimensions

Rapid heating of the AHX plate from 293 to 373K by hot thermal fluid in the heat exchange tube

Molecule Works' prototype units employing AHX contactor

Single-vessel unit for screening of adsorbent performances (capacity, stability) and design parameters

Two-vessel prototype unit to simulate scaleup capture processes

~8 m²gas/solid mass transfer area /vessel

Performance features of the AHX contactor addressing capital cost, energy consumption, adsorbent lifetime issues

Process flow diagram proposed for reduction of CO₂ emissions on ships

_										
E	xpected outcomes of phase I work									
				0	0	0	•	•		
•	Overall material and energy balances									
•	Specifications and cost of major pieces of equipment									
•	Process designs and performance targets of the capt	JLE	e a	nc	l/o	r				
	conversion units to make the onboard capture proces potential opportunity for commercialization pursuit.	s b	e	aı	ne	W				

