A Novel Molten Salt System for CO₂ Based Oxidative Dehydrogenation with Integrated Carbon Capture

Fanxing Li

NC State University

Project Partners: West Virginia University and Susteon Inc.

DOE/NETL Project Manager: Gregory Imler

01/17/2024

Outline

- Project Overview and Technology Background
- Technical Approach and Key Results
- Summary and Future Work

NC STATE UNIVERSITY **Project Overview:** Molten-salt mediated oxidative dehydrogenation (MM-ODH) of ethane

Section I: Upstream MM-ODH System

Section II: Downstream Hydrocarboxylation Step

Outline

• Project Overview and Technology Background

- Technical Approach and Key Results
- Summary and Future Work

Experimental Set-up

In-line QMS

Gas Chromatography

*CO*₂-*Capture (Step 1):* CO₂ (in flue gas) + X₂O (dissolved alkali metal oxide in the molten salt) → X₂CO₃ MeO_{x-1} + 1/2O₂ (in flue gas) → MeO_x

*CO*₂-*ODH* (*Step 2*) R-CH₂-CH₃ + X₂CO₃ → R-CH=CH₂ + CO + H₂O + X₂O (R can be H for ethane, CH₃, or CH₃-CH₂) R-CH₂-CH₃ + MeO_x → R-CH=CH₂ + H₂O + MeO_{x-1}

Overview of the Key Results

Material Synthesis, Testing, and Characterizations

NC STATE UNIVERSITY Redox Catalyst Synthesis and Characterizations

Porous Oxide Synthesis

20

30

50

20 (degree)

40

XRD analysis of the synthesized catalysts

OBSERVATIONS:

- Carbonate and perovskite phases are compatible;
- Besides 3DOM, reactive grinding and nanocasting were performed at NCSU, all leading to high porosity.

70

60

80

Redox Catalyst Synthesis and Testing

Figure: Hydrocarbon Product distribution

during ethane injection (5th injection cycle)

Injection: Reducing agent: 30 sec, Oxidizing agent: 90 sec

Catalyst: 60%Li₂CO₃@LSF, Temperature: 750 °C

Oxygenate S.V = 600 hr-1

West Virginia University.

Effect of Ethane Space velocity

Reactive Performance

60% Li ₂ CO ₃ / LSF	Ethane Conv. (%)	Ethylene Select. (%)	Methane Select (%)	H ₂ Conv. (%)	CO ₂ Conv. (%)	CO ₂ Capture (%)
600	71.5	71.2	18.4	39	93.7	36.4
1200	70.5	70.6	21.3	27	93.4	44.5
3600	67.5	80.3	12	28	93.8	48.1

- Increase in residence time promotes ethylene side reaction which results in decrease of ethylene selectivity
- Increase in space velocity hydrogen produced would have less time to react with CO_2 in the molten salt, resulting in lower H_2 conversion
- Ethylene yield at 3600 hr⁻¹ SV is ~55 % 8

Redox Catalyst Optimizations

NC STATE UNIVERSITY Optimizations of the Molten Salt Compositions

■ 750 C, 25 min 🛛 775 C, 15 min ■ 775 C, 25 min 🖃 775 C, 30 min 🛛 800 C, 15 min ■ 800 C, 25 min 🚍 800 C, 30 min 🖾 825 C, 15 min ■ 825 C, 25 min 🚍 825 C, 30 min

Ethylene yield improves with temperature and MM-ODH is pretty flexible with cycle time

NC STATE UNIVERSITY Long-Term Stability of the Molten Salt (60 – 20 – 20)

Excellent stability was observed throughout the 500 reaction cycles

TEA and LCA

Susteon

Process Modeling in AspenPlus™

NC STATE UNIVERSITY Task 8 Techno-Economic and Lifecycle Analysis

Susteon

Fabrication cost estimate						
Bed Diameter	m	3.00				
Bed height	m	4.21				
Packing Height (bottom and top)	m	0.50				
Total Height	m	4.71				
Refractory Insulation Thickness	m	0.20				
Reactor ID	m	3.41				
Reactor Volume	m3	42.89				
Refractory Volume	m3	13.33				
Fabrication Cost (2013 Dollars), per reactor	USD	\$1,098,089.30				
Total Fabrication cost (2023)	USD	\$24,772,894.52				

Estimating Cost of Ethylene Production

Reference Ethylene Price: \$700-\$1000/t (2020-2022)

Cost Component	Annual Charges	Unit Cost	Contribution		
Cost Component	(\$MM/year)	(\$/ton ethylene)	(without credit)		
Capital costs	72.4	223	38%		
Power/Utilities	28.8	89	15%		
Consumables/Feedstocks	79.5	245	41%		
O&M	12.2	38	6%		
CO credit		-77			
Total	193.0	517	100%		

□Downstream separation: from AspenPlus[™]

□ Total overnight cost: **\$362 million**

Highlights

Capital intensity of **\$1110/TPY ethylene**

Large scale (1.5MM TPY) ethane crackers: **\$1100/TPY**

Reactor system cost: **\$87 million BEC (2023 estimate)**

□~85% of total cracker capital: fired heaters

□ For MM-ODH: 55% capital upstream

NC STATE UNIVERSITY Task 8 Techno-Economic and Lifecycle Analysis

Estimating Net kg CO₂e emitted per /kg ethylene

Scenario I

Reactor energy supplied **by methane combustion** at 60% efficiency, other electricity demands supplied by solar energy with negligible energy inefficiencies

Susteon

Task 8 Techno-Economic and Lifecycle Analysis Susteon **NC STATE UNIVERSITY**

Estimating Net kg CO₂e emitted per /kg ethylene

Scenario II

All electricity demands supplied by solar energy with negligible energy inefficiencies

15

Outline

- Project Overview and Technology Background
- Technical Approach and Key Results
- Summary and Future Work

Summary

- Perovskite oxides with high porosity were prepared via scalable methods;
- Oxide molten salt compatibility were verified and performance exceeded the targets;
- Molten salt with optimized compositions alone were also shown to be highly effective;
- >85% CO₂ capture, >90% CO₂ conversion, >90% ethylene selectivity, and ~66% ethylene yield. Meeting the proposed milestone;
- 500 cycle confirmed the long-term stability of the system;
- TEA indicates potential for notable energy savings and significant economic benefits;
- All the key milestones have been met.

Future work beyond the project:

- Identification of other application scenarios through discussions with potential industrial partner(s);
- Detailed reaction medium and catalyst cost and scalability study; Detailed system design and costing;

Acknowledgements

Susteon

NCSU:

Kyle Vogt-Lowell, Dennis Chacko, Luke Neal

WestVirginiaUniversity. **WVU:**

John Hu, Sonit Balyan, Xingbo Liu, Wenyuan Li, Shaoshuai Chen

Susteon:

Vasudev Haribal, Raghubir Gupta, Andrew Tong, Emma Li

Naomi O'Neil Greg Imler

Thanks for the support! Questions or suggestions?

NC STATE UNIVERSITY Project Schedule and Milestones

		Stage I			Stage II								
Task Name	Team Member	Q1	Q2	Q3	Q4	Q5	Q6	Q7 Q8	Q9	Q10 Q	.1 Q1	2 Q1	.3
Task 1 Project Management and Planning	NCSU/Susteon												
Milestone 1.1: PMP modification	NCSU	0											
Milestone 1.2: TMP	NCSU/Susteon	٥											
Task 2.0: Redox Catalyst Synthesis and Characterizations	NCSU												
Subtask 2.1 Redox Catalyst Synthesis	NCSU												
Subtask 2.2 Characterization of the Redox Catalysts	NCSU												
Milestone 2.2: Catalyst Synthesis Screening	NCSU		0										
Task 3.0: Redox Catalyst Optimization	WVU/NCSU												
Subtask 3.1. Determination of Rate Limiting Step	WVU												
Subtask 3.2. Redox Catalyst Optimization	NCSU												
Milestone 3.2: Optimized Catalyst	NCSU				\diamond								
Task 4.0: Techno-Economic and Lifecycle Analysis	Susteon												
Subtask 4.1 Process Model Refinement and Analysis	Susteon												
Milestone 4.1: Initial TEA	Susteon				0								
Subtask 4.2 Analysis of Alternative Commercial Products	Susteon												
Task 5.0: Redox Catalyst: Long Term Stability and Flue Gas Contaminant Studies	NCSU/WVU												
Subtask 5.1. Long -Term Testing of Redox Catalysts	NCSU												
Milestone 5.1: 500 Cycle Tests	NCSU						\diamond						
Subtask 5.2 Empirical Kinetic Parameters Analysis and Validation	WVU												
Task 6.0: Techno-Economic and Life Cycle Analyses Update	Susteon												
Task 7.0: Redox Catalyst: Economics Driven Optimizations	NCSU												
Subtask 7.1 Techno-Economic Redox Catalyst Optimization	NCSU												
Milestone 7.1: Refined reactor design	NCSU									<			
Subtask 7.2 Synthesis Optimization for Scale-up	NCSU												
Task 8.0: Development of Detailed Reactor and Process Design	Susteon												
Milestone 8.1 Final LCA/TEA	Susteon											0	
Milestone 8.2: Commercialization Road Map	Susteon											0	

Task 7 Redox Catalyst Optimizations

Task 2 Redox Catalyst Synthesis and Characterizations

Reactive Performance

Milestone 2.2 *Catalyst Synthesis Screening*: four redox catalysts giving at least 80% selectivity and 50% yield for ethylene at <750 °C, and 75% CO₂ conversion with 85% CO₂ capture)

West Virginia University.

Task 2 Redox Catalyst Synthesis and Characterizations

Porous Oxide Synthesis

Objective: Develop a 3-dimensional ordered macro-porous (3DOM) perovskite $La_{0.8}Sr_{0.2}FeO_3(LSF)$ to enhance pore volume

SEM image of the as-synthesized PMMA

OBSERVATIONS:

- 3DOM LSF was synthesized using polymethyl methacrylate (PMMA) as a soft template
- Synthesized PMMA in Figure demonstrated the ordered PMMA microsphere array formed by PMMA microspheres with the uniform diameter (~300 nm).

Task 2 Redox Catalyst Synthesis and Characterizations Porous Oxide Synthesis

(a-d) SEM images of LSF prepared at different calcination temperature and e) XRD patterns of LSFO#9 prepared at 500 and 700 $^{\circ}$ C.

🎸 West Virginia University.

800 °C

OBSERVATIONS:

- Targeted 3DOM structure of LSF is temperature sensitive
- When the calcination temperature is 500 °C, the 3DOM structure kept well but no crystal structure was formed (Figure (c)).
- High temperatures negatively impact the 3DOM structure as shown in Figure (b) and (c)
- Some 3DOM structure was retained at 800 °C, but a large part of these structure was affected (Figure (d)).

Redox Catalyst Synthesis and Testing

Effect of CO₂ Space velocity

Reactive Performance

Methane 60% Ethane Ethylene CO, CO₂ Η, $Li_2CO_3/$ Select. Select Capture Conv. Conv. Conv. (%) LSF (%) (%) (%) (%) (%) 600 67.5 80.3 28 93.8 48.1 12 1200 56.1 76.3 13.3 17.5 89.4 28 53.2 75.6 13.8 17.8 89.4 22.4 2400 3600 48.1 13.4 17.4 89.4 22.1 76.4

Figure: Hydrocarbon Product distribution during ethane injection (5th injection cycle)

Catalyst: **60%Li₂CO₃@LSF**, Temperature: 750 °C Injection: Reducing agent: 30 sec, Oxidizing agent: 90 sec Ethane S.V = 3600 hr-1

• An increase in CO₂ space velocity leads to less residence time to replenish molten carbonate salt which results in decrease in CO₂ capture of the molten salt

Increasing the mol% of K_2CO_3 decreases ethane conversion and ethylene yield and improves CO_2 conversion.

NC STATE UNIVERSITY Optimizations of the Molten Salt Composition

Increasing the mol% of Li_2CO_3 improves ethane conversion and ethylene yield and decreases CO_2 conversion (except for 100% Li_2CO_3).

NC STATE UNIVERSITY Task 3 Redox Catalyst Optimizations

Increasing the mol% of K₂CO₃ decreases ethane conversion but increases CO₂ conversion

NC STATE UNIVERSITY Task 3 Redox Catalyst Optimizations

Increasing the mol% of Na₂CO₃ does not significantly impact MM-ODH performance.

NC STATE UNIVERSITY Task 3 Redox Catalyst Optimizations

Catalyst	Reaction Metric	Current Performance	DOE Milestone			
	Temperature	750°C	<u><</u> 750°C			
	Ethylene Yield	~55%	<u>></u> 50%			
1) Molten LNK-LSF	Ethylene Selectivity	~81%	<u>></u> 80%			
slurry	CO ₂ Conversion	~93%	<u>></u> 75%			
	CO ₂ Capture	~50%	<u>></u> 85%			
	Temperature	800°C	<u><</u> 750°C			
2) Molten LNK bath with	Ethylene Yield	69.5%/64.4%	<u>></u> 50%			
, two compositions (80-	Ethylene Selectivity	86.3%/89.1%	<u>></u> 80%			
10-10 and 100-0-0)*	CO ₂ Conversion	91.4%/80.2%	<u>></u> 75%			
	CO ₂ Capture	>85%	<u>></u> 85%			

*x mol% $Li_2CO_3 - y$ mol% $Na_2CO_3 - z$ mol% K_2CO_3

Milestone 2.2 *Catalyst Synthesis Screening*: Report four redox catalysts giving at least 80% selectivity and 50% yield for ethylene at <750 °C, and 75% CO₂ conversion with 85% CO₂ capture)