

Reactive Carbon Capture Observations from ARPA-E 2022 Workshop

Jack Lewnard ARPA-E Program Director

January 17, 2024

2022 ARPA-E CO₂ Utilization/Reactive Carbon Capture Workshop

- Re-imagine the problem
 - Dramatically reduce cost and environmental footprint of C₁ and/or C₂ products
 - Leverage commercial downstream processes
 - Skip steps, and their related hardware and energy inputs
 - Leverage new materials/chemistry (ionic liquids, MOFs, homogeneous catalysts)
 - Maximize process intensification
 - <u>https://arpa-e.energy.gov/events/reactive-carbon-capture-workshop</u>
- Reactive Carbon Capture
 - Capture CO₂ and react it while in adsorbed/absorbed state
 - No intermediate CO₂ production, purification, compression
 - <u>https://netl.doe.gov/projects/files/SummaryReportoftheReactiveCO2CaptureProcessIntegrationfortheNewCarb</u> onEconomyWorkshop_08242021.pdf
- React CO₂ and separate the product(s), esp where CO₂ is hot and in reducing environment
 - Replace CO₂ capture with easier product separation (ie MeOH in water wash)

Feb. 2, 2022

Options for RCC

- Inorganic RCC
 - Capture CO₂ with weak or strong base
 - Cement, pozzolanic ash, minerals
 - "Sequesters" the CO₂ as a mineral
 - Can operate over a wide range of temperatures (although rates vary)
 - Minimal concerns about impurities
 - Organic RCC
 - React CO and/or CO2 to make useful products
 - May be easier to separate products than CO2 (ie MeOH)
 - Biological
 - How Nature does it
 - Lanza Tech
 - ARPA-E ECOSYNBIO

November 18, 2020

Organic and Biological RCC Challenges

- Carbon Capture (first step)
 - Prefer low temperature, high pressure, no competing species
 - "Goldilocks" affinity less than a chemical bond, more than van der Waals forces
 - High selectivity for CO or CO_2 esp. avoid O_2
- Reaction (second step)
 - Catalytic processes prefer high temperature, high pressure
 - Plasma processes prefer low pressure
 - No free oxygen to compete for reducing equivalents

Biology already does this – what can we learn?

November 18, 2020

CO and CO₂ Sources/Attributes

Feb. 2, 2022

System-Level Considerations

- "Contaminants"
 - O₂, possibly SOx and NOx from oxidizing environment (air and combustion point sources)
 - H₂S, NH₃, particulates from reducing environments
 - Possibly many from water-borne CO₂
- ► Temperature
 - Adsorption/absorption favors low temperature
 - Reaction favors high temperature
 - Not clear if there is a good middle ground
 - Cooling below 40 C is not easy or cheap
- Pressure drop to contact CO₂ from air or flue gas can be energy-intensive
- Liquids can be pumped, easy to change temperature
- Solids are hard to move, hard to change temperature. Adsorption system capturing CO₂ from oxidizing environments usually require multiple beds with interim purge steps
- Operating intermittently (to access off-peak electricity or accommodate variable flow CO₂ sources) can be difficult, lowers capital utilization, and increases costs

Feb. 2, 2022