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Project Objectives 

• Advance the TRL (2 to 4) through combined 
experimental and modeling to enhance the efficiencies 
while assessing the TEA/LCA of  a dual functional 
catalytic porous polymer for simultaneous capture and 
conversion of  CO2 to value added chemicals (formic 
acid)
– Establish CO2-philicity and selectivity 
– Scale material 50x
– Establish critical performance attributes (CPAs) for capture 

& conversion efficiency, temp, pressure, etc.
» batch to bed reactor

– TEA/LCA 

• Funding $1M/year, 3 years  ($2.4M ORNL; $600K 
NETL) 

• 10/1/2021 – 9/30/2024

2
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Mitigating Carbon Emissions through Process Intensification

• Capture, Storage, Utilization/Conversion
Development of materials and processes 
are key to mitigate the ongoing challenges

• Optimizing (integrations)
• Reactions, separations, heat exchange, 

reactor design, etc.
• Scale-what happens with impurities etc?
• Cost
• Life Cycle-environmental effects
• Energy intensity of process
• Stability
• Regenerability

Adamu, A., et. al., BMS Chem. Eng. 2, 2, (2020)
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Batch 
50 mg

Flow bed
5-100 g

Demonstration
(Chevron) 
1000x’s scale 
up

Achievement: 
• Development of  a polymer catalysts that will simultaneously undergo capture and conversion to valuable 

products, i.e.,  formic acid. 
• Efficient separation of  upstream and downstream 
• Scaled from batch reactor to flow reactor at 100 fold.  
Impact: Represents a revolutionary large-scale process intensification that is efficient on the upstream and 
downstream chemical processes for CO2 reduction.  

Process Intensification Concept
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Design Considerations for CO2 Reduction to Formic Acid

• Challenges to consider in design
– CO2 hydrogenation to formic acid is thermodynamically unfavorable ( ΔG°298= 32.9 kJ/mol)
– Complex catalytic activity dependent on sorption capacity, CO2-philicity, accessibility to active metal site 
–  Homogeneous catalysts-good catalytic activity and product selectivity

• Fail: low surface areas, low active site densities, leaching, need additives to make or react with, $$ separation steps for recycling, chemically 
intolerant

– Under-developed area of  organic heterogeneous catalysis
• Separation and recovery of  catalysts for recycling 

– Construct bi-functional hybrid porous polymer with coordinated strong base and 
transition metal to enhance capture and conversion by optimizing sorption and 
accessibility.  Holds promise to outperform current materials.
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 Hybrid Systems for a Holistic Approach

Catalytic porous polymer
60 bar total

Mild T (<40 oC)

CO2/solvent/H2

Formic
acid

Solvent/unreacted CO2 and H2

Choice of polymer catalyst
aids upstream 

CO2 capture and selectivity

Effective downstream 
separation

• Mild reaction conditions enable catalyst stability
• CO2 selective polymer -enables conversion efficiency
• Downstream in-situ separation to reduce cost
• Coordinated heterogeneous catalyst overcomes leaching, increases stability and recyclability

• 800,000 T of formic acid produced a year using toxic CO 
and methanol.

• Emits 3076 kg CO2 per 1 T of formic acid.   

• Whereas 100 kg CO2 emitted if CO2 hydrogenation 
process was used.  

Nat. Commun, 2014, 5, 4017 and Chem. Soc. Rev., 2014, 43, 7982
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Desirable Properties of  Material

• Simple/affordable material with process integration
• High surface area and microporosity volume increased 

contact with active sites
• Selective for CO2

• Stable and recyclable
• Build rigidity into the structure to open porosity and 

accessibility of active sites
• 3˚ nitrogen for covalent bound metal active site
• Ease of  recovery and reutilization for sustainability and 

environmental impact
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• Larger, flexible 
structure for porosity 
distribution and 
potential swelling

Polymer 1

Polymer 2

PIM 
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CO2 Sorption at Temp & Pressure:  PIM-TB/Ru-13%
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PIM-RuClx • Single gas measurement with only CO2 present

• The CO2 sorption capacity decreased with increased 
temperature

• The PIM-MB-TB-RuClx has a lower sorption capacity than 
the pure PIM-MB-TB (not Ru mass corrected)

• At low pressure, the sorption isotherm is nearly the same 
for both the pure PIM-MB-TB and the PIM-MB-TB-RuClx

MODEL
• Direct comparison of  Sips model predicted equilibrium capacity at 

different temperate as function of  pressure
• Empirical Multi-layer adsorption model combo. Langmuir and 

Freundlich models

𝑄𝑄𝑒𝑒 = 𝑚𝑚. (𝐾𝐾𝐾𝐾𝐾𝐾 𝑃𝑃𝐶𝐶𝐶𝐶2 )
1 + (𝐾𝐾𝐾𝐾𝐾𝐾 𝑃𝑃𝐶𝐶𝐶𝐶2 )𝑛𝑛

𝑛𝑛

PIM

Selectivity 
CO2:N2  (26:1) at 1bar
CO2:CO (20:1) at 1bar



1010 Open slide master to edit

CO2 Sorption Gravimetric Rate:  PIM-TB-Ru13%

• Single gas measurement with only CO2 present.  Gas dosed over time 

• The CO2 absorbs into the sample at a similar rate as the gas dosing

• At 3 different dosing rates, the CO2 is absorbed at a similar rate as the dosing indicating a 
fast sorption rate (<2 min)
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CO2 Sorption Kinetics using Volumetric Analysis
 PIM-TB vs PIM-SBF-(Ru13%)

• Single gas measurement with only CO2 present.  Gas dosed immediately

• The CO2 is absorbed within approximately 1 min

• The PIM and the PIM-Ru show similar uptake kinetics at 1 bar and 25 °C

• The sorption kinetics are similar for MB and SBF PIM samples

MB (MKK) PIM SBF PIM MB (MKK) vs. SBF PIM 
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CO2 Conversion

Temp Controlled
and pressure readout

StirringTPCO2
H2

Catalytic PIM
Triethylamine

Autoclave

T = 40°C (2 days)

Formic Acid
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CO2 Conversion – Formic acid formation (1H NMR data)

Top layer

Bottom layer

PIM-Ru 13%, 60 bar (CO2:H2 = 1:1), 40 °C

Formic acid Triethylamine

Density of Triethylamine: 0.73 g/mL
Density of Formic acid  : 1.22 g/mL

• Pure Formic Acid
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CO2 Conversion – Pressure changes 40 ˚C 60 bar

CO2:H2 = 1:1CO2:H2 = 2:1 CO2:H2 = 1:2

TON PIM-Ru-3%   : 967 
PIM-Ru-13% : 654

PIM-Ru-3%   : 1088
PIM-Ru-13% : 510

PIM-Ru-3%   : 714
PIM-Ru-13% : 376

24h
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Kinetic model developed and validated using batch 
reactor data:  PIM-TB-Ru

𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
= 𝑘𝑘𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶2𝑓𝑓𝐻𝐻2
− 𝑘𝑘𝑏𝑏𝑓𝑓HCOOH

𝑑𝑑 𝑐𝑐𝑖𝑖𝑉𝑉𝑟𝑟
𝑑𝑑𝑡𝑡

= �
𝑚𝑚

𝑣𝑣f,𝑚𝑚𝑐𝑐f,𝑚𝑚𝑖𝑖 + 𝑉𝑉𝑟𝑟𝑅𝑅𝑖𝑖
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Material Gas Capacity, Selectivity and Performance

Formic
Acid

+H2

40 C
60 bar

• Notable: pore size ranged 7-14 Angstrom; ideal for H2 storage, and CO2 adsorption 
• Isoteric heats of adsorption ca. 28 kJ/mol for physisorption of CO2

Patent Filed and Published:  Kidder, M. K., Catalytic porous polymer for selective reduction of CO2. U.S. Patent 
Application No. 18/100,664, 7/24/2023

CO2

Material 
Efficiency

High surface area 

Excellent porosity
(0.93 cm3/g total pores; 0.4 

cm3/g micropores)

Process Efficiency
Low temperature reaction 

conditions: CO2 and H2 @ 60 
bar total and <40 C

CO2 Capacity 
@ 40 bar/25C= 5.4 mmol/g 
@54 bar/ 30 C = 7.2 mmol/g
>3.0 mmol/g w/ Ru 11wt%

Gas Selectivity
Selective to CO2 

(CO2:N2 = 26:1) @ 25 C
(CO2:CH4 = 20:1)

High product selectivity to 
Formic acid 100%

(no separation needed)
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Batch to Flow Reactor 

Features
• Gas-liquid mixer
• Max Pressure 100 bar
• Liquid-liquid separator
• Recirculation of solvent/gas
• Software control and analysis
• Chemical compatibility with products (formic acid)
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Pellets and Printing 

• Develop geometry that allows for 
optimize flow and residence time

• CO2 Sorption analysis shows pelletizing 
doesn’t affect capacity or rate

• Printing requires binder development
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Conceptual Process Design

Production of formic acid from NGCC flue gas using Ru/PIM catalyst

• Kinetic model was developed based on 

experimental data (5 g catalyst bed).

• ASPEN model and TEA results are currently 

preliminary. 

• Sensitivity to cost and technical assumptions 

were performed.

• LCA work will be completed after finalizing life 

cycle inventory data from the modeling task. 

• Flue gas from a natural gas combined cycle 

plant (Case B31B) is used. 
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Preliminary TEA and Sensitivity Analysis

Preliminary TEA results show economically feasible process under 
base case assumptions (1 year catalyst life, capital cost 
comparable to conventional amine process, 76% conversion, 
and current Ru price). 

Market price (2020)
38 cents/lb

Base case
33 cents/lb
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CO2 Conversion in PIM-RU: Systems Design & Economics

𝐶𝐶𝐶𝐶2 +  𝐻𝐻2  ⇌  𝐶𝐶𝐻𝐻2𝐶𝐶2
𝑟𝑟𝐻𝐻𝐻𝐻2𝐻𝐻2 = 𝑘𝑘𝑓𝑓𝑓𝑓𝐻𝐻𝐻𝐻2𝐶𝐶𝐻𝐻2 − 𝑘𝑘𝑏𝑏𝑓𝑓𝐻𝐻𝐻𝐻2𝐻𝐻2

 CO2 conversion to formic acid is modeled 
in Aspen Plus:
— Plug flow reactor

 Rate expression:
— Power law

 Feed conversion and product formation

Reactor Dimension: L/D = 5

 Proposed plant size:
— 1500 kg/hr Formic acid

 Feed composition:
— CO2/H2/TEA (31 mol%/44 mol%/25 mol%)
— CO2 utilization rate: 1813 kg/hr
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Summary Slide
22

• Scaling the polymer and catalyst has been reproducible
• 1 kg of polymer produced
• Decent carbon capacities of 4-7 mmol/g CO2 at 40-54 bar; model validation
• Batch reactions; <40 °C and >60 bar are current ideal conditions (batch)

• Reactions complete in 24 h; 
• Pressure too low to continue and/or surface coated with product; packed bed/flow will over come 

this issue
• Less catalyst increased TON
• Selective for CO2 (upstream); ease of separation (downstream)

• Pure product
• Initial packed bed testing and simulations show cohesive information
• Market competitive process

• FY24 to finish:  
• Packed bed experiments feed back with models; flow rate and resonance time, pellet and 

printed catalyst development 
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