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Goal: To design CO, capture units that concurrently produce materials from CO,.

carbonates and carbamates

reduction of CO»

FWP-80562 FWP 78606
Near term targets Intermediate term targets Long term targets
carbon-neutral fuels and chemicals: carbon-negative building materials: Mineralization materials:
CH;0H, CH, CO,LIG CaCO; or MgCO;,

Bricket et al. Chem. Sci., 2022,13, 6445-6456



~7"  EEMPAis a promising solvent (2.0 GJ/tonne CO,)!

Pacific

Northwest ~ With low costs of capture ($39/tonne? CO,).2

NATIONAL LABORATORY

1

085 +

Capture Efficiency
=1
w

085 | i
1
binary CO,/N, :_‘ with 3.8% 0,, 5 ppm 50,, 50 ppm NO )
! — : y !
-20 -10 0 10 20 30 40 50
20
15 I| :
T il vt '
% 10
w
1
o d T T T
-20 -10 0 10 20 30 40 50

2.5% |
2.0% o foL ’J 2 N T S =
R T %.'.--'3}&"@ " o {
15% R S %ﬁﬁrﬁﬂ iy
. w3
la s W
By sty ppuneted L
WO

c

8 [

o oo
Single component, water-lean solvent jg . T vt L

19% cheaper and efficient than Shell’'s CANSOLV
0.0% }
90% lower corrosion and degradation than 5SM MEA 24 10 o 10 2 3 o 50
Time, hr
0.5 MW coal fired plant demonstration, June, 2024 e

1. Energy Environ. Sci., 2020,13, 4106-4113, 2. J. Clean. Prod. 2023, 388, 135696



\ﬁ/ In-Situ 13C MAS NMR Enables an Unprecedented View
e est Of Speciation and Kinetics of Catalytic Reactions
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e
O O___0_
ST T '7_\T| O
H

@ L G J F l | Nucleophific attack ofllal.ticeoxygen aogi]ggel%g 68%/ é&% C\iﬂ nggsa {R‘?a:f(ase O

H H

o)\\'-o o// OH /70 & Hm H,0 m
'LI ° T|6 T T|“’LEE0 'l'l o '|I'I O~ T| Pk STi ~ \TiIO\TiZO\TiZO\Ti —— \TI ST O ST £2k STi
rom 170 Cto%‘i = D
NH
) 13CH;0H
EESN I 1 N
5 (_\/

(b) EEMP, fk/ 0, + /l,\
I oo at170° cA‘\) sg L Ethanql, N “ pt §thanol e
ST P T| s ST T T ST P STi 7ok STi P STi \+ BN Ti,O T T @N%H

Pt,mz EEMPA 13CHO c
H3OH 1

" 5@\“3009; :><;>H (2) EEMPA ﬁ@
[ .

\\\\\\\\

R H

o oo
DT T T,
D

H, g 0. 0 H,0
-|—| T| T| STi T| STOOT T

om\log T megfHNeforWiamide with a
0 200 190 180 170 160 150 140 130 1‘2F/:50\\1;'>U“ % "é’(')in 70 60 50 40 30 20 10 0 -0 - heterogeneous CatalySt
—13C(ppm)

In situ "*C MAS-NMR during the hydrogenation of 13CO, in the presence of 2-
EEMPA and a 5 wt % Pt/TiO, catalyst at 170° C under 60 bar H, (initial
pressure) in an ethanol co-solvent, 2-EEMPA: EtOH=1:10 (molar ratio). Advanced Energy Materials, (2022), 12, 46, 2202369 4




7 Methanol formation is sensitive to temperature

Pacific

Northwest  gand space velocity in a Post-Combustion Solvent

Hydrogenation of captured CO, using a packed-bed flow reactor.

Reaction T | CO, Conv | WHSV | TOS Selectivity (mol C%)

Entry (°C) (%) Ocaol9./h| (h) | MeOH |EtOH| PrOH | BuOH | CH, C,Hq4
1 [ 140 2.2 0.15 - 92.7 0.0 7.3 0.0 00 || 0.0
2 170 7.7 0.15 - 66.5 4.3 2.5 0.7 26.0 0.0
3 170 29.1 0.015 - 57.0 4.5 0.8 14 26.7 8.7
4 190 11.8 0.15 - 78.0 4.3 0.0 2.5 15.1 0.0
5 190 26.9 0.075 - 63.6 4.6 0.2 1.9 26.4 3.3
6 [ 190 85.7 0.015 40 51.5 9.7 0.6 1.9 271 9.3
7 190 75.9 0.015 60 50.2 8.6 0.7 2.0 29.2 9.3
8 190 65.2 0.015 80 46.0 8.0 1.1 4.7 29.8 10.5

Liquid feed: captured CO, in EEMPA solvent (5 wt.% CO,) Reaction conditions: 1.0 g catalyst D1, 870 psig; Gas feed: 38 sccm H,, 5 sccm N,,.
Change in WHSV is achieved by changing the liquid feed flow (0.05, 0.025, 0.005 mL/min).

* PY/TiO, is highly selective towards methanol with 93% selectivity at 140 °C.

« At 190 °C, the CO, conversion increased from 12% to 86% when space velocity was
decreased by a factor of 10.

» Conversion decreased from 86% to 65% over a span of approximately 80 hours.
Advanced Energy Materials, (2022), 12, 46, 2202369




\‘7/ Demonstration of Semi-Batch CO, Capture
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Northwest  gnd Catalytic Conversion to Methanol
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ava. Tomporatore | 954 | rCl — e » Single-pass operation: 8-hours on simulated coal-
Stripper - - .
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[ ]
Liquid 15.3 [kg/h] CO, Conversion 55308 %] 1 90 C’ 865 pSIg’ O . 053 gCOZ/gcat/h r
; . 0 . 0
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LG 25.2 8]
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Barpaga et al. Green Chem, In Revision; U.S. patent application filed.




7 Key Performance Measures for PNNL’s IC3M

Pacific

Northwest  Technology (From Previous TEA Study®)
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*Advanced Energy Materials, (2022), 12, 46, 2202369 Jiang et al. In Preparation



‘W/ IC3M could achieve significant GHG emission
rchwest  reductions compared to conventional processes.
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* Life Cycle GHG Emission Impact Assessment for byproducts
e Un-optimized 2022 SOT and Goal > 72% reduction in GHG emissions vs fossil-derived methanol
* |C3M results in 21% lower GHG emissions than separate capture and conversion (SC3M)

e Further GHG reductions via improvement in the catalyst performance

Jiang et al. In Preparation ~ ©



\3/  Composite materials may be economical large
Pacific volume CO, sinks.
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*  Wood flour (~50 wt.% filler) and HDPE plastic

« US Market: 3.55 billion linear board feet, $2.8 billion
USD per year

« Storing 5 wt. % CO, in decking could sequester
250,000 tonnes per year (emissions of 54,000 cars)

« *Susceptible to rot and UV damage, 20-year lifespan

Goal: Replacing wood fluor with abundant, cheap and highly chemically/UV durable
biopolymers. Their use in composites also provides CO, emission avoidance.

\

 Lignin: complex organic polymer that forms
structural materials in the support of plants.

 Lignite: combustible sedimentary rock formed
from naturally compressed peat.

K Lignin Lignite j




Lignin and lignite are strong, cheap, and
Pacific chemically durable but they cannot bind well in

Northwest

e nolymer matrixes without chemical modification.
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Lignin ™ Carboxylated Lignin

* Maleic Anhydride Polyethylene (MAPE) is chemically grafted on phenolic hydroxyls
* Functionalization is susceptible to hydrolysis of C-O-C linkage

*How can we add CO, to the surface of these particles to act like MAPE while being a CO, sink ?

Macromol. Mater. Eng. 2017, 302, 1700341 European Polymer Journal 150 (2021) 110389




Turning CO, Into the “Velcro” to Improve Binding
Pacific with Polymer Matrixes via Reactive Carbon Capture

Northwest
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Capture Solvent

R, .
e C logy

HDPE Lignin or Lignite + CO, Workup & solvent recovery (CO,LIG) Composite

How can we add CO, to polyphenolic polymers...?

Kolbe-Schmidt Reaction Production of Salicylic Acid for Aspirin
OH OH O | ' ‘

1. NaOH Sl

3. Heat ; Y v

4. Water i 8

« Chemically durable (C-C bonded) composite fillers utilizing CO, in its entirety

« Can use any inorganic or strong organic base (capture solvent)




Carboxylating 200g batches of alkaline lignin,
Pacific sodium lignosulfate,DEC25, Buelah Zap Lignite,
wewsee and DEC26, Wyodak Sub-bituminous coal.

Lignin

Lignite Capture Solvent
- .
CHs on
H3C——OH o .
lignin CHj lignin 0 Isolated yields
HaC—SH g‘ONa Lignin = 64-98%
* HsC * Lignite = 39-65%
H;CO H (or lignin) o) H (or lignin)
OH OH
Lignin alkali Sodium lignin sulfonate Lignite Sub-bituminous

Manuscript in preparation.



\ﬁ/ In-situ FT-IR (Fourier Transform Infrared) to
pacific determine CO, loading, optimal reaction
o conditions and reaction rate.
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xﬁ/ Shear Assisted Processing and Extrusion
D (ShAPE) manufacturing of wires, bars, or ribbons
Northwest  for property testing.

A. Reza holding an 80 wi %
filler ShAPE composite
extrudate,

B. Tooling cavity designed
for manufactunng composite
‘bars’,

C. Cold-pressed composite
feedstock granules in
ShAPE ring;

D. ShAPE polymer
compaosite bars with no
surface defects

ShAPE enables 80 wt.% CO,LIG filler content, vs 50% for conventional injection molding

Patent pending, Manuscript in preparation.



The Flexural Moduli of ShAPE Extruded Bars 80%
Pacific Lignins / 20% wt.% HDPE are Above 2 GPa,

Northwest

wwwoss [fl@eting International Building Code Requirements
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« Higher modulus was obtained for non-functionalized fillers
(LigHDPE_1 vs. LigHDPE_3), and for low-speed extrusion
(LigHDPE_1 vs. LigHDPE_2) 011 '

I LighppPe_1 | LigHDPE_2 LigHDPE_3

Patent pending, Manuscript in preparation.



\ﬁ/ TEA results based on real experimental data

. A suggests that CO,LIG can be produced at a cost
Northwest  lower than the HDPE ($1/kq)
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(5wt% Water) \ wi Heating (Adiabatic Wash Tank | Filter Capital depreciation 0.071
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o
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« Projected selling price of CO,LIG lignin fillers are $0.82/kg (linear board foot)

Manuscript in preparation.



\v’/ LCA for lignin composites suggests the global
racific «  warming potential of CO,LIG is much lower than
that of conventional wood-plastic composites.
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(a) Results include the CO, stored into CO,LIG only (b) Results include the CO, stored into CO-LIG and the additional CO
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+ GWPs of the CO,LIG-plastic composite panel are lower in all the scenarios, with an overall reduction
between 18 and 54% (carbon storage benefits excluded).
17

Manuscript in preparation.



\ﬁ/ *Temporal radiative forcing analysis CO, on
Pacific CO,LIG-plastic composite (lifetime of the product)

Northwest

wuee l@e@ded to achieve carbon neutrality.

Total GWP: 0.95 kgCO0,,./kg
Total carbon storage: -3.45 kgCO,_./kg
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*100% renewable electricity, recycled HDPE with benefits from subsurface CO, storage Manuscript in preparation.




\vﬁ/ Reactive CDR can reduce costs and energy
pachic & demand for CO,-derived fuels, chemicals
and CO,-negative composites.
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IC3M thermocatalytic reduction = Cheaper, more efficient fuels and chemicals

» Solvent drives condensed-phase catalytic hydrogenations

« Different mechanisms, free energy landscapes and chemical equilibria to exploit
« Minimizes enthalpy of sorbent regeneration and CO, compression energy

* 72% reduction in GHG emissions vs fossil-derived methanol

« 21% lower GHG emissions than separate capture and conversion (SC3M)

IC3M COZLIG = Economically profitable COZ-neqative building materials

» Solvent’s Bronsted basicity captures and promotes Kolbe-Schmidt reactions
+ 2-5wt. % CO, fixation on lignin and lignite ~ 80 °C Up to 94% and 65% isolated yields respectively
+ Lignin (50-70 wt.% filler) and Lignite composites (80 wt.% filler) using shear assisted processing and extrusion

* Manufactured composites meet IBC metrics for flooring or decking

« Carbon neutrality is achieved after 20 years of storage, and > 20 years results in a net negative GWP
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