

Pacific Northwest

> Integrated Capture and Conversion of CO₂ into Materials (IC³M):

Pathways for Producing CO₂-Negative Building Composites (FWP 78606)

&

Expanding IC³M for C1 and C2 Production (FWP-80562)

David J. Heldebrant

PNNL is operated by Battelle for the U.S. Department of Energy

Integrated Capture and Conversion of CO₂ into Materials (IC³M); A Multi-Product Platform for CCUS

<u>Goal:</u> To design CO_2 capture units that concurrently produce materials from CO_2 .

FWP-80562

<u>Near term targets</u> carbon-neutral fuels and chemicals: CH_3OH , CH_4 **FWP 78606**

Intermediate term targets carbon-negative building materials: CO₂LIG

Long term targets

Mineralization materials: $CaCO_3$ or $MgCO_3$

Bricket et al. Chem. Sci., 2022,13, 6445-6456

Pacific Northwest

EEMPA is a promising solvent (2.0 GJ/tonne CO_2)¹ with low costs of capture (\$39/tonne² CO_2).²

- Single component, water-lean solvent
- 19% cheaper and efficient than Shell's CANSOLV
- 90% lower corrosion and degradation than 5M MEA
- 0.5 MW coal fired plant demonstration, June, 2024

1. Energy Environ. Sci., **2020**, 13, 4106-4113, 2. J. Clean. Prod. **2023**, 388, 135696

In-Situ ¹³C MAS NMR Enables an Unprecedented View of Speciation and Kinetics of Catalytic Reactions

In situ ¹³C MAS-NMR during the hydrogenation of ¹³CO₂ in the presence of 2-EEMPA and a 5 wt % Pt/TiO₂ catalyst at 170 $^{\circ}$ C under 60 bar H₂ (initial pressure) in an ethanol co-solvent, 2-EEMPA: EtOH=1:10 (molar ratio).

Advanced Energy Materials, (2022), 12, 46, 2202369

Methanol formation is sensitive to temperature and space velocity in a Post-Combustion Solvent

Hydrogenation of captured CO_2 using a packed-bed flow reactor.

	Reaction T		CO ₂ Conv	WHSV	TOS	Selectivity (mol C%)					
Entry		(°C)	(%)	g _{c02} /g _{cat} /h	(h)	MeOH	EtOH	PrOH	BuOH	CH₄	C_2H_6
1		140	2.2	0.15	-	92.7	0.0	7.3	0.0	0.0	0.0
2		170	7.7	0.15	-	66.5	4.3	2.5	0.7	26.0	0.0
3		170	29.1	0.015	-	57.0	4.5	0.8	1.4	26.7	8.7
4		190	11.8	0.15	-	78.0	4.3	0.0	2.5	15.1	0.0
5		190	26.9	0.075	-	63.6	4.6	0.2	1.9	26.4	3.3
6		190	85.7	0.015	40	51.5	9.7	0.6	1.9	27.1	9.3
7		190	75.9	0.015	60	50.2	8.6	0.7	2.0	29.2	9.3
8		190	65.2	0.015	80	46.0	8.0	1.1	4.7	29.8	10.5

Liquid feed: captured CO_2 in EEMPA solvent (5 wt.% CO_2) Reaction conditions: 1.0 g catalyst D1, 870 psig; Gas feed: 38 sccm H₂, 5 sccm N₂. Change in WHSV is achieved by changing the liquid feed flow (0.05, 0.025, 0.005 mL/min).

- Pt/TiO₂ is highly selective towards **methanol** with **93% selectivity** at **140 °C**.
- At 190 °C, the CO₂ conversion increased from 12% to 86% when space velocity was decreased by a factor of 10.
- Conversion decreased from 86% to 65% over a span of approximately 80 hours.

Advanced Energy Materials, (2022), 12, 46, 2202369

5

Demonstration of Semi-Batch CO₂ Capture and Catalytic Conversion to Methanol

CO ₂ Capture - LCFS				
Fred	CO ₂ /N ₂ [dry basis]	15 / 85	[mol%]	
Feed	Dew Point	15.6	[°C]	
0 h h	Avg. Temperature	32.3	[°C]	
Absorber	Avg. Pressure	0.08	[psig]	
Christen	Avg. Temperature	95.1	[°C]	
Sunpper	Avg. Pressure	14.39	[psig]	
Reboiler	Temperature	114.9	[°C]	
	Liquid	15.3	[kg/h]	
Flow	Gas	0.61	[kg/h]	
	L/G	25.2	[-]	
CO ₂ C	Capture Efficiency	88.9	[%]	

CO ₂ Conversion - TCCS				
Cap Food	H ₂ /N ₂	93 / 7	[mol%]	
Gas Feed	Flowrate	6.7 E-3	[kg/h]	
Linuid Enned	2-EEMPA/CO ₂ /H ₂ O	78 / 5 / 17	[mol%]	
Liquia Feea	Flowrate	5.9 E-4	[kg/h]	
	Temperature	170	[°C]	
Reactor	Pressure	865	[psig]	
	Catalyst: 5wt% Pt on TiO ₂	2.5	[g]	
(CO ₂ Conversion	55 → 0.8	[%]	
	Methanol Yield	94 → 0	[%]	

- Single-pass operation: 8-hours on simulated coalderived flue gas (CO₂, N₂, H₂O).
- 190°C, 865 psig, 0.053 g_{CO2}/g_{cat}/hr
- Conversion > 50%, CH_3OH selectivity ~ 80%, 8 hr TOS

Barpaga et al. Green Chem, In Revision; U.S. patent application filed.

2 20 00

Key Performance Measures for PNNL's IC³M **Technology (From Previous TEA Study*)**

	SOT	Goal Case
WHSV (gCO2/gCat/hr)	0.075	0.15
Single-pass CO ₂ conversion (%)	26.9	85.7
Methanol selectivity (C %)	63.6	100
Methane selectivity (C %)	26.4	0
Source	Experiment	R&D Target

--- Recycle is required only when the single pass conversion is less than 65%.

*Advanced Energy Materials, (2022), 12, 46, 2202369

Jiang et al. In Preparation

IC³M could achieve significant GHG emission reductions compared to conventional processes.

- Life Cycle GHG Emission Impact Assessment for byproducts
- Un-optimized 2022 SOT and Goal > 72% reduction in GHG emissions vs fossil-derived methanol
- IC³M results in 21% lower GHG emissions than separate capture and conversion (SC3M)
- Further GHG reductions via improvement in the catalyst performance

Jiang et al. In Preparation⁸

thwest

Composite materials may be economical large volume CO₂ sinks.

- Wood flour (~50 wt.% filler) and HDPE plastic
- US Market: 3.55 billion linear board feet, \$2.8 billion USD per year
- Storing 5 wt. % CO₂ in decking could sequester 250,000 tonnes per year (emissions of 54,000 cars)
- *Susceptible to rot and UV damage, 20-year lifespan

Goal: Replacing wood fluor with abundant, cheap and highly chemically/UV durable biopolymers. Their use in composites also provides CO_2 emission avoidance.

- Lignin: complex organic polymer that forms structural materials in the support of plants.
- Lignite: combustible sedimentary rock formed from naturally compressed peat.

Lignin and lignite are strong, cheap, and chemically durable but they cannot bind well in polymer matrixes without chemical modification.

- Maleic Anhydride Polyethylene (MAPE) is chemically grafted on phenolic hydroxyls
- Functionalization is susceptible to hydrolysis of C-O-C linkage

*How can we add CO_2 to the surface of these particles to act like MAPE while being a CO_2 sink ?

Macromol. Mater. Eng. 2017, 302, 1700341

European Polymer Journal 150 (2021) 110389

Turning CO₂ Into the "Velcro" to Improve Binding with Polymer Matrixes via Reactive Carbon Capture

How can we add CO₂ to polyphenolic polymers...?

Pacific

Production of Salicylic Acid for Aspirin

- Chemically durable (C-C bonded) composite fillers utilizing CO₂ in its entirety
- Can use any inorganic or strong organic base (capture solvent)

Pacific Northwest

NATIONAL LABORATORY

Carboxylating 200g batches of alkaline lignin, sodium lignosulfate,DEC25, Buelah Zap Lignite, and DEC26, Wyodak Sub-bituminous coal.

In-situ FT-IR (Fourier Transform Infrared) to determine CO₂ loading, optimal reaction conditions and reaction rate.

- Praying Mantis DRIFTS Cell:
 - Max temp ~ 910 °C (under vacuum)
 - Max Pressure ~ 1.5 Mpa (~215 PSI)
- Monitor carboxylic acid peak growth
- Built calibration standards
- CO₂ content in fillers ranges 2- 4.2 wt.%
- Operando kinetic measurements

Manuscript in preparation.

Shear Assisted Processing and Extrusion (ShAPE) manufacturing of wires, bars, or ribbons for property testing.

A. Reza holding an 80 wt.% filler ShAPE composite extrudate;

B. Tooling cavity designed for manufacturing composite 'bars';

 C. Cold-pressed composite feedstock granules in ShAPE ring;
D. ShAPE polymer composite bars with no surface defects

• ShAPE enables 80 wt.% CO₂LIG filler content, vs 50% for conventional injection molding

14

Patent pending, Manuscript in preparation.

The Flexural Moduli of ShAPE Extruded Bars 80% Lignins / 20% wt.% HDPE are Above 2 GPa, Meeting International Building Code Requirements

Pacific Northwest

NATIONAL LABORATORY

Patent pending, Manuscript in preparation.

Northwest

and a los

TEA results based on real experimental data suggests that CO₂LIG can be produced at a cost lower than the HDPE (\$1/kg)

Minimum selling price	(\$/kg)
Lignin	0.375
Chemicals	0.085
Utilities	0.028
By-product credits	-0.043
Capital depreciation	0.071
O&M	0.088
Return on Investment	0.106
Others (tax, etc.)	0.112
Total	0.820

Projected selling price of CO₂LIG lignin fillers are \$0.82/kg (linear board foot)

16

Manuscript in preparation.

Pacific Northwest

LCA for lignin composites suggests the global warming potential of CO₂LIG is much lower than that of conventional wood-plastic composites.

(a) Results include the CO2 stored into CO2LIG only

(b) Results include the CO₂ stored into CO₂LIG and the additional CO₂ sequestered and stored in the ground

 GWPs of the CO₂LIG-plastic composite panel are lower in all the scenarios, with an overall reduction between 18 and 54% (carbon storage benefits excluded).

17

Manuscript in preparation.

*Temporal radiative forcing analysis CO₂ on CO₂LIG-plastic composite (lifetime of the product) needed to achieve carbon neutrality.

*100% renewable electricity, recycled HDPE with benefits from subsurface CO₂ storage

Manuscript in preparation.

18

Sec.

Reactive CDR can reduce costs and energy demand for CO_2 -derived fuels, chemicals and CO_2 -negative composites.

IC³M thermocatalytic reduction = Cheaper, more efficient fuels and chemicals

- Solvent drives condensed-phase catalytic hydrogenations
- Different mechanisms, free energy landscapes and chemical equilibria to exploit
- Minimizes enthalpy of sorbent regeneration and CO₂ compression energy
- 72% reduction in GHG emissions vs fossil-derived methanol
- 21% lower GHG emissions than separate capture and conversion (SC³M)

IC³M CO₂LIG = Economically profitable CO₂-negative building materials

- Solvent's Bronsted basicity captures and promotes Kolbe-Schmidt reactions
- 2-5 wt. % CO_2 fixation on lignin and lignite ~ 80 °C Up to 94% and 65% isolated yields respectively
- Lignin (50-70 wt.% filler) and Lignite composites (80 wt.% filler) using shear assisted processing and extrusion
- Manufactured composites meet IBC metrics for flooring or decking
- Carbon neutrality is achieved after 20 years of storage, and > 20 years results in a net negative GWP

Acknowledgements

U.S. DEPARTMENT OF ENERGY

Fossil Energy and **Carbon Management**

Flavio da Cruz Ethan Simonoff Siari Sosa Ron Kent

PNNL-FWP-80562

No.

PM: Dylan Leary

PM: Sai Gollakota

Co-PI: PM/Co-PI: Jotheeswari **Robert A. Dagle** Kothandaraman

Phillip Koech

Johnny Saavedra-Lopez

Barpaga

Deepika Malhotra

Mike Hubbard

PM/Co-PI: John Linehan Satish K. Nune

Jaelynne King

Aditya Nittala

Yelin Ni

20

Md. Reza-E-Rabby Keerti Kaapagantula Deepika Malhotra

Nick Nelson Katarzyna Grubel

Jose Ramos

