

High Performance Solvent for NGCC Flue Gas CO₂ Capture

DE-FE0032216

PI: Dr. Aravind Rabindran Sujay Someshwar Dr. S. James Zhou Dr. Raghubir Gupta

Net-zero Flexible Power: High Capture Rate Project Review Meeting

Location: Delta Hotel Philadelphia Airport June 6-7, 2024

Sustenol™ for NGCC Flue Gas CO₂ Capture

✓ >97% CO₂ Capture L/G = 0.7 → To reach Net-zero DOE target ✓ 20% lower surface tension indicating better wettability ✓ Double the reaction rate

lowers the required column height

>30% projected capital cost reduction

- ✓ 57% higher working capacity proportionally reduced solvent circulation rate
- <10 cP viscosity at 40°C better mass transfer rate for CO₂-rich condition

>15% projected operating cost reduction

- 50% lower regeneration energy
 2.2 GJ /t. CO₂ reboiler duty
- ✓ 0.0001x vapor pressure
- Lower oxidative, thermal and hydrothermal degradation

when exposed to air and higher temperatures

compared with 30 wt.% MEA

Sustenol™ Test System for Solvent Optimization

Sustenol™ CO₂ Capture Performance – 4% CO₂ in Flue Gas

Initial formulation of Sustenol™ shows a higher working capacity – up to 81% increase (at L/G of 1.5)

Optimized Sustenol™ for High Capture Rates at a Low L/G

CO₂ Capture Efficiency of Optimized Sustenol™ 5.0% 4.5% 4.3% CO₂ in NGCC flue gas Outlet CO₂ Concentration (ppm) 4.0% 3500 3000 2500 97% Capture = 1332.4 ppm 2000 L/G = 0.71500 98.5% Capture = 666.2 ppm L/G = 11000 500 0 0.2 0.8 1.2 0.4 0.6 0 1

Time (hr)

Optimized Sustenol™ for High Capture Rates at a Low L/G

Scaled-up process model (rate-based) to commercial scale (6000 tonne/day)

Property Estimation of Optimized Sustenol™

Property Estimation of Optimized Sustenol™

Lower vapor pressure → Lower solvent loss

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Cansolv MHI MEA AMP PZ MDEA Sustenol

Lower degradation → Lower make-up rate

Reduction in Reboiler Duty

Estimated regeneration energy based on rich CO_2 loading at 40°C and 4% CO_2 in flue gas

Heat Capacity

Low reboiler duty + Low sensible heat \rightarrow Low operating cost (OPEX)

Marginal Costs at High Capture Rate (beyond 90% capture)

30wt.% MEA costs from Du et al. 2021 (Int. J. Greenh. Gas Contr. 111 (2021) 103473

1 TPD CO₂ Capture System for Continuous Testing (In Progress) SUST 20 N Reimagining the carbon ecosystem

Conventional Absorber	
Packing Diameter	250 mm
Packing Height	$2 \times 2 m$
L/G (kg/kg)	0.7-4
Gas flow	1000-4000 lpm
Liquid flow	3-10 lpm
H ₂ O	5-7 mol%
CO ₂	4-5 mol%
N ₂	70-80 mol%
0 ₂	8-12 mol%
Desorber	
Packing Diameter	250 mm
Packing Height	2 m
Pressure	1-2 bar
Reboiler Temperature	e 110-120°C
Pre-heater Duty	12 kW
Reboiler Duty	27 kW

Sustenol[™] Testing at NCCC

View of 0.5-MW PSTU

Engineering Scale Testing of SustenolTM for NGCC Flue Gas CO_2 Capture

Test the drop-in Sustenol[™] solvent at NCCC using the pilot-scale solvent test unit (PSTU) - 0.5 MW NGCC

- \checkmark to confirm and validate its CO₂ capture performance (>95% CO₂ capture)
- to confirm reboiler duty for solvent regeneration
- to test and confirm carbon steel and 316SS corrosion rates
- to refine and update rate-based process model
- ✓ to determine optimum operating window
- to demonstrate **stability and emissions** for commercial demonstration and deployment
- ✓ to demonstrate NGCC flue gas CO₂ capture costs <\$45/tonne</p>

Challenges and R&D needs for high capture rates and flexible operation

- **Optimize process turndown ratio -** with respect to NGCC power plant load-following operation
- **Optimize solvent flowrate** at high capture rates
- Lower the lean loading to increase the driving force at the top of the absorber.
- Provision for auxiliary steam during low steam availability
- □ Investigate effect of solvent viscosity for high capture rate
- □ Investigate effect of solvent intercooling along the absorber under high capture rates.
- \Box Investigate effect of flue gas inlet temperature on CO₂ capture rate.
- **Control water-balance, aerosol, and vapor emissions** at high CO₂ capture rates.
- □ Investigate column liquid flooding levels and liquid hold-up at different operating capacity factors (25% to 85%).

Impacts and issues regarding emissions changes in flexible operation/high capture rates

□ At lower lean loading:

- increased driving force at the top of absorber will have higher temperature bulge at the top
- increased specific steam requirement
- increased aerosol emissions at the top of absorber
- increased intercooling requirements
- Control emissions by water wash/acid wash
- **Column wetting** at low flue gas flow rates, which can cause more aerosol emissions
- Study impact of cost factors and financial assumptions to better understand the economic viability for zero and negative emissions power plants under various economic conditions.

Sustenol™ for NGCC Flue Gas CO₂ Capture

Sustenol[™] is a water-lean mixed amine solvent developed by Susteon

High CO₂ Capture Rate
 Low CAPEX
 Low OPEX

High working capacity >30% lower capital cost

Half the regeneration energy >15% lower operating cost

Acknowledgement

Department of Energy/FECM/NETL [Award Number DE-FE0032216].

DOE Project Manager Ms. Mariah Young

Dr. Aravind Rabindran

Research Chemical Engineer II Susteon Inc. <u>avr@susteoninc.com</u> <u>www.susteoninc.com</u>

16