

MIXED-SALT PROCESS (MSP) FOR CO₂ CAPTURE IN NGCC SYSTEMS AT ≥95% CAPTURE:

HIGHLY EFFICIENT REGENERATION MODULE FOR CARBON CAPTURE SYSTEMS IN NATURAL GAS COMBINED CYCLE

Net-zero Flexible Power: High Capture Rate Project Review Meeting

PI: Indira Jayaweera, SRI

Presented by Elisabeth Perea, SRI

June 6, 2024 11:15-11:35 AM

DOE Contract # FE0032135

Outline

 \bigcirc

- MSP Background
- Project Objectives
- Technology Approach for ≥95% Capture
- Impacts of Operating at High Capture Rate
- Challenges and R&D Needs to Maintain High Capture Rate

Current SRI Carbon Capture Project Portfolio

Funding: 80% DOE, 20% Cost-share (~10% Cash, ~10% In-kind)

PBI-membrane for Hydrogen recovery

Development and Testing of a High-Temperature PBI Hollow-Fiber Membrane Technology for Pre-Combustion CO₂ Capture. DOE-NETL: DE-FE0031633 Team - PBI Performance Products, and Enerfex

Mini-pilot: (MSP Application for NG)

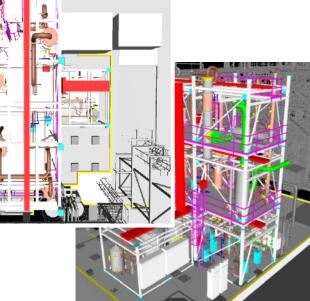
Highly Efficient Regeneration Module for Carbon Capture Systems in Natural Gas Combined Cycle Applications. DOE-NETL: DE-FE0032135 Team- BH, Trimeric, and OLI Systems

Mini-pilot: Advanced Solvent

Mixed-Salt Based Transformational Solvent Technology for CO₂ Capture. DOE-NETL: DE-FE0031597 Team - OLI Systems, Technical University of Denmark, SINTEF, and BH

Engineering Demonstration of MSP at 0.5 MWe scale

Engineering-Scale Demonstration of the Mixed-Salt Process (MSP) for CO₂ Capture. DOE-NETL: DE-FE0031588 Team - BH, NCCC, Trimeric, OLI Systems, Epic Systems



Current MSP Project Objectives

- Demonstrate the Mixed-salt process (MSP) for capturing CO₂ from dilute sources such as natural gas (NG) power plants at 95% or better efficiency.
- Project scope includes:
 - Design and fabrication of a highly efficient regeneration module capable of providing a deep-lean absorption solution.
 - Integration of the advanced stripper with the existing absorption modules of the large-bench scale MSP system.
 - Testing of the integrated system at SRI site using a simulated flue gas stream equivalent to about 10 kWe.
 - Data collection for detailed techno-economic analysis (TEA)

Mixed-Salt Process (MSP)

Process Summary

- Uses inexpensive, industrially available material (potassium and ammonium salts)
- No solvent degradation
- Has the potential for easy permitting in many localities
- Uses known process engineering
- Accelerated development possible

Demonstrated Benefits (by testing and modeling)

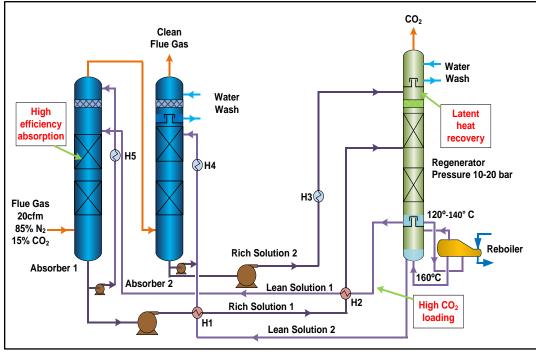
- Enhanced CO₂ capture efficiency
- High CO₂-loading capacity
- High-pressure release of CO₂ (10-12 bar)
- Reduced energy consumption (For 90% capture, 1.9-2.2 MJ/kg-CO₂ for PC-based applications, 2.9 MJ/kg-CO₂ for NG-based applications)

Expected Additional Benefits

- Capture from low-concentration CO₂ sources
- > 95% capture possible
- Removes common acid pollutants and particulates

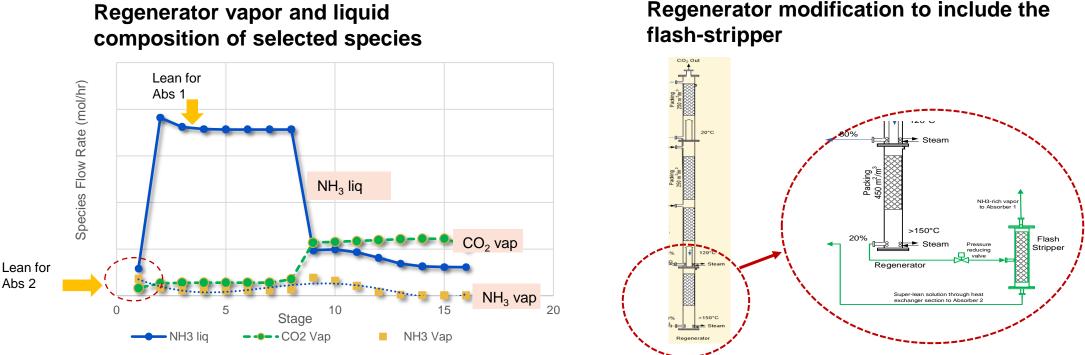
K₂CO₃–NH₃–CO₂–H₂O system

 $CO_2(g) \leftarrow \rightarrow CO_2(aq)$


 $NH_3(aq) + CO_2(aq) + H_2O(liq) \leftarrow \rightarrow (NH_4)HCO_3(aq)$

 $(NH_4)_2CO_3 + CO_2(aq) + H_2O (liq) \leftarrow \rightarrow 2(NH_4)HCO_3(aq)$

 $2NH_3(aq) + CO_2(aq) \leftarrow \rightarrow (NH_4)NH_2CO_2$


 $(NH_4)NH_2CO_2(aq) + CO_2(aq) + 2 H_2O(liq) \leftarrow 2(NH_4)HCO_3(aq)$

 $K_2CO_3(aq) + CO_2(aq) + H_2O(liq) + Catalyst \leftarrow \rightarrow 2KHCO_3(aq)$

Simplified Process Flow Diagram

Approach for Generating Lean Solutions for high **Efficiency CO₂ Capture in NG Flue Gas**

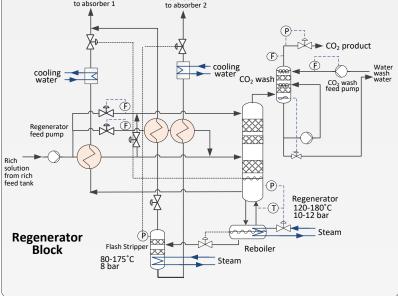
Regenerator modification to include the

- In the modified system, partially ammonia-lean lean solvent is extracted from the bottom of the regenerator • and sent through the flash-stripper to recover more ammonia for efficient absorber 1 operation.
- Potassium-rich lean solvent is directed to absorber 2.

Analytical and **Control Systems**

Current Status

Absorbers


Regenerator

7

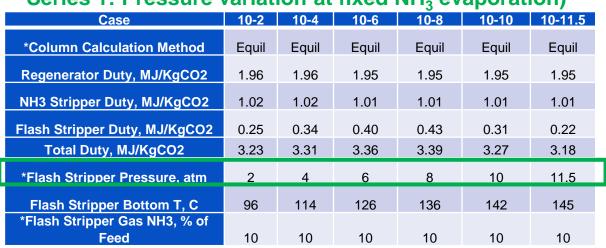
operation at a high capture rate in the large bench system at SRI (pictured below)

- OLI Systems optimized the flowsheet model to generate a heat and mass balance (H&MB) for comparison to DOE case 31B Rev. 4.
- Trimeric is currently finalizing the techno-economic analysis (TEA)

Regenerator block of the SRI large bench scale system with new flash stripper

Lean solution

Lean solution


to absorber 1

Modeling the flash stripper performance to determine optimal operating conditions

Series 1: Pressure variation at fixed NH₃ evaporation)

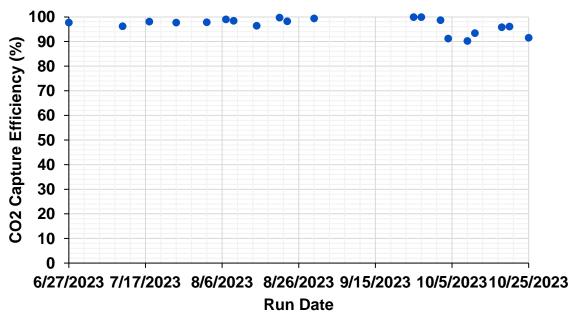
Series 3: NH₃ evaporation variation at fixed pressure

Case	10	19	29	34	39	41	43	48	58
*Column Calculation Method	Equil								
Regenerator Duty, MJ/KgCO2	1.95	1.95	1.95	1.956	1.95	1.95	1.95	1.96	1.96
NH3 Stripper Duty, MJ/KgCO2	1.01	0.98	0.95	0.93	0.92	0.91	0.91	0.89	0.87
Flash Stripper Duty, MJ/KgCO2	0.22	0.22	0.21	0.21	0.22	0.22	0.23	0.25	0.30
Total Duty, MJ/KgCO2	3.18	3.15	3.11	3.096	3.089	3.088	3.090	3.10	3.13
*Flash Stripper Pressure, atm	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
Flash Stripper Bottom T, C	145	151	157	160	162	163	164	166	170
*Flash Stripper Gas NH3, % of Feed	10	19	29	34	39	41	43	48	58

Case	140-4	140-6	140-8	140-10	140- 11.5
*Column Calculation Method	Equil	Equil	Equil	Equil	Equil
Regenerator Duty, MJ/KgCO2	1.97	1.96	1.95	1.95	1.95
NH3 Stripper Duty, MJ/KgCO2	0.75	0.89	0.99	1.02	1.03
Flash Stripper Duty, MJ/KgCO2	1.41	0.90	0.51	0.30	0.20
Total Duty, MJ/KgCO2	4.13	3.75	3.44	3.27	3.18
*Flash Stripper Pressure, atm	4	6	8	10	11.5
*Flash Stripper Bottom T, C Flash Stripper Gas NH3, % of	140	140	140	140	140
Feed	89	48	16	8	4

Varied the flash stripper pressure and the % of NH3 vaporized from the flash stripper feed stream within the process model to observe the effect on the total system reboiler duty 8

Series 2: Pressure variation at fixed temperature

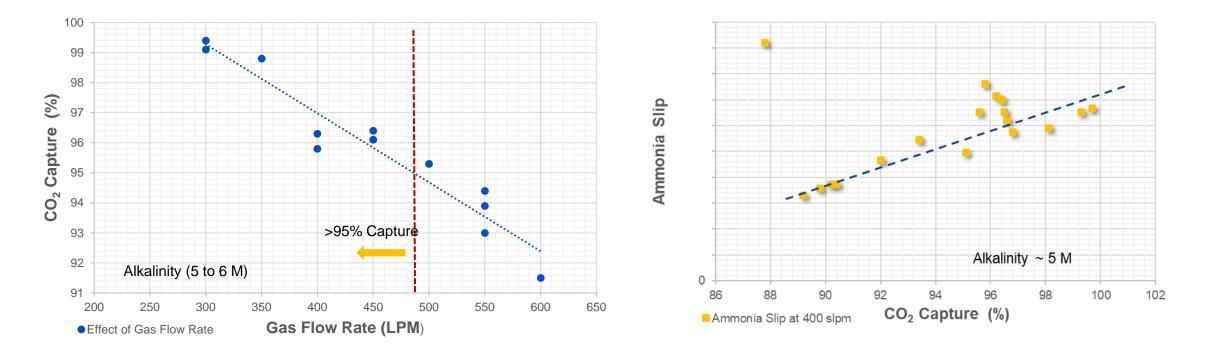


Parametric Testing at Large Bench Scale

Key Test Parameters

- Regenerator and Flash stripper T,P
- Flash stripper on/off
- Liquid recycle rate (L/G: 2.5 to 8 range)
- Gas flow rate (300 to 600 LPM)

95% or greater CO₂ capture rate achieved with and without a flash stripper



Run	Total gas flow	Regene	Regenerator Flash stri		Flash		CO ₂ capture %	
#	rate (LPM)	P (bar)	т (°С)	(On/Off)	T (°C)	(bar)	ABS 1 + ABS 2	
4				Off	NA	NA	89.8	
6		70		On	113	3.2	95.8	
8		7.8		Off	NA	NA	95.6	
9				On	105	2.1	96.2	
10		8.9		Off	NA	NA	96.8	
11	400	0.9		On	114	3.3	98.1	
14	400	8.2		Off	NA	NA	95.1	
15		8.9		On	94	1.6	96.6	
22		8		Off	NA	NA	96.5	
23		7.6		On	95	12	96.4	
25		7.3		Off	NA	NA	99.3	
27		7		On	101	2	99.7	
30		8		Off	NA	NA	99.1	
31	300	6.9		On	92	1.8	99.4	
38	300	9.9		Off	NA	NA	97.3	
40		9.7	125		102	2.4	98.4	
41	350	9.9	to		97	2	95.2	
42	330	10.1	140		114	3.3	91.2	
43		9.8	140	On	96	2.8	90.2	
44		9.7		UII	126	4.6	89.2	
45		9.7			116	3	87.8	
46		9.8			103	3.2	90.4	
47	400	9.7			79	1.8	92	
48		9.7		Off	NA	NA	93.4	
49		9.8			102	2.6	94.8	
50		9.7			111	3.7	96.3	
51*		9.7			109	3.6	95.8	
52	450	9.9			103	2.7	96.1	
53	450	9.8		On	103	2.7	96.4	
54	500	9.8			105	2.9	95.3	
55		10.7			102	3	94.4	
56	550	10			102	3	93.9	

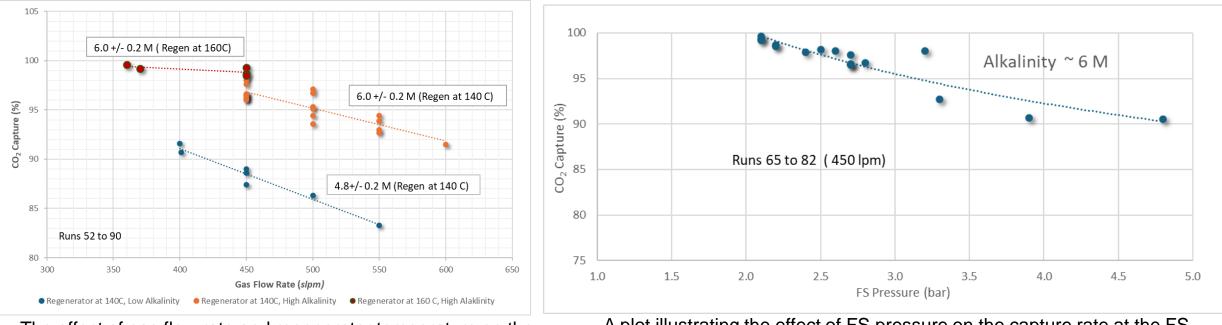
CO₂ Capture Rate, Gas Flow Rate and Ammonia Slip

- Ammonia slip = ammonia exiting the top of Absorber 2. This ammonia is re-absorbed in the water wash and then recovered in an ammonia stripper column and recycled back to the absorbers.
- A higher ammonia slip results in a higher reboiler duty for the ammonia stripper.

- 95% 99% CO₂ capture (for NG flue gas simulating feed streams) was easily achieved during the initial testing of the integrated system.
- Ammonia slip from Absorber 2 at 400 slpm flow rate is below 14,000 ppm for 95% CO₂ capture for 5 M (> 6 molal) alkalinity MSP solutions
- Ammonia slip from Absorber 2 at 400 slpm flow rate is around 20,000 ppm for 95-96% CO₂ capture for 6 M (>7 molal) alkalinity MSP solutions
- We selected 450 slpm for the first series of steady state testing

Steady State Operation at >95% Capture

- Flash stripper operating for these runs
- Cumulative run time to date: 280 hrs.
- Test runs 68 to 75: 450 LPM and at L/G ratio of 3.5 for steady-state testing.


95% or greater CO₂ capture rate achieved with flash stripper for ~200/280 hours

10			• •		•	••••	
9	- 0	•					•
8	80 -	450 to 600 slp	m	450 slpm			>450 slpm
(%) 7	0 -						
CO ₂ Capture Efficiency (%)	io -						
Te Eff	60 -						
Inide.	ю -		1				
د رم	30 -						
2	20 -		 				
1	0 -					Efficier	ncy (%)
	o +		- ! 			!	
10)/21/	2023	10/31/2023	11/10/2023	11/20/2023	11/30/2023	12/10/2023
				Run	Date		

	Gas		Regenerator		Flash stripper					
Run	Flow	L/G	conditions		conditions					
#	rate		Р	Bottom	T (°C)	Р	ABS 1 +			
	(LPM)		(bar)	T(°C)		(bar)	ABS 2	\mathbf{N}		
58	600	2.5			102	2.5	91.5			
59					104	2.7	95.1			
60	500	3.2			113	3.9	94.4			
61					91	1.7	93.6			
62					102	2.6	96			
63	450	3.5			114	4.0	96.1			
64					93	1.8	96.3			
65	550	3		125-140	102	3.3	92.7			
66	500	2.5		125-140	102	2.8	96.7			
67	500	3.2		-	92	1.8	97.1			
68					102	2.7	96.6			
69					102	2.7	96.6			
70			9.7	9.7	101	2.7	96.5			
71	450	3.5			103	2.7	97.6			
72	450	5.5			101	2.5	98.2			
73					103	2.6	98			
74					102	2.1	99.3			
75					102	2.2	98.7			
76*	370	4.2		140-160	103	2.1	99.2			
77	450	3			103	2.2	98.5			
78**	360	4			102	2.1	99.6			
79			1 [102	3.2	98			
80	450	4.5	4.5	4.5		130-140	99	2.4	97.9	
81	430	3		120-140	102	3.9	90.7			
82		5			101	4.8	90.5			

*CO2 feed concentration ~20% **CO2 feed concentration ~ 18%

Achievement of >95% Capture at Large Bench Scale

The effect of gas flow rate and regenerator temperature on the capture rate. FS pressure range (2 to 3 bar at 103 $^{\circ}\mathrm{C}$)

A plot illustrating the effect of FS pressure on the capture rate at the FS operating temperature of 103°C.

- 95% 97% CO₂ capture (for NG flue gas simulating feed streams) was easily achieved by regenerating at temperatures between 130 to 140 °C.
- >98% can be achieved by using high alkalinity solution or by increasing the regeneration temperature to 160°C.
- Identified the FS operation conditions to achieve >95%:
 - 2 to 3 bar at 103 °C /5-6 bar 120 °C/ ~11 bar at 160 °C (40% ammonia evaporation)

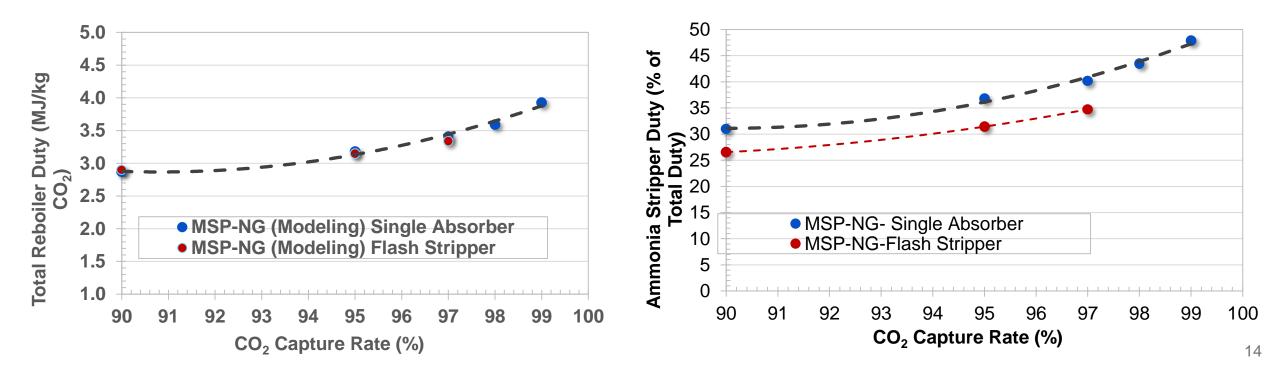
Result of Flowsheet Modeling for the TEA

>95% capture rate from natural gas flue gas is achievable with the Mixed-Salt Process with 3.14 MJ/kgCO_2 total reboiler duty.

Summary of conditions:

CO₂ Feed: 4% CO₂ Capture: 95.4% CO₂ Purity: 99.1%

Flash-Stripper: 11.5 atm Flash-stripper T: 160 °C Flash-Stripper NH3 recovery: 34%


Regenerator T: 133 °C Regenerator P: 12 atm Total Reboiler Duty: 3.14 MJ/kg CO₂

(Energy) Cost Impact of Increased Capture Rate: Total Heat Duty vs. Capture Rate

MSP-NG-Flash Stripper: Case including the flash stripper to strip ammonia from the ammonia-rich lean stream, minimizing the ammonia stripper duty.

MSP-NG-Single Absorber: Case where there is no flash stripper and only one lean stream removed from the regenerator. This case has CAPEX benefits because only one absorber column is required.

Challenges/Benefits for High Capture Rate Operation

- Impacts of operation at higher capture rate are concentrated in the ammonia stripper.
 - Ammonia stripper reboiler duty increases with increased capture rate
 - Improvements to ammonia/water separation would be a major enabling breakthrough.
- However, the base MSP process (absorbers/regenerator) is robust and easily capable of operation at high capture rates.

Challenges/Benefits for Flexible Operation

- The response of plant operating parameters to dynamic scenarios would be necessary to fully characterize the MSP under flexible operating conditions
 - Cold and warm start-ups to assess the performance and ramp-up time of the MSP
 - Simple reboiler steam decoupling and reintroduction to assess the minimum capture rates
 achieved during turndown
- Promising intrinsic benefits of MSP:
 - High-pressure MSP regenerator is small and would heat up quickly
 - Solvent flow rates in the MSP can easily be adjusted and MSP has been demonstrated at a wide range of L/G ratios

Schedule for Completion

Task Name	Start	Finish
Task 6.0 – Final System Modeling and Techno-Economic Analysis (TEA)	Mon 10/2/23	Mon 9/30/24
Subtask 6.1 – Modeling and Test Data Comparison	Mon 10/2/23	Fri 5/31/24
Subtask 6.2 –Optimized CC Unit Integration with the Power Pant and TEA	Mon 10/2/23	Mon 9/30/24
TEA Preparation- on going (Trimeric)	Tue 2/6/24	Thu 6/6/24
TEA Information Review- ongoing (SRI)	Tue 2/6/24	Thu 6/13/24
TEA Review/Comments (DOE)	Fri 6/14/24	Fri 9/13/24
Final TEA Update (SRI and Trimeric)	Mon 9/16/24	Mon 9/30/24
Subtask 6.3 – Technology Maturation Plan (TMP)	Mon 7/1/24	Wed 7/31/24
Final Report	Mon 7/1/24	Mon 9/30/24

Disclaimer:

This presentation includes an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Thank you!

Contact:

Dr. Indira Jayaweera

indira.jayaweera@sri.com

1-650-859-4042