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Startup and Transient Emissions

 Startup duration & emissions are unit-specific & variable

— Impacted by unit type, environmental controls installed, equipment sizes, process & permit requirements

* 3 startup modes — cold, warm, hot

— Defined by starting boiler/HRSG &
steam turbine temperatures
e Emissions driven by time required to
place controls in service/optimize
performance (combustion &
environmental)

— NGCC — SCR/Ox catalyst temp. in proper range

— Coal —SCR catalyst temp. in proper range,
particulate & sorbent controls meet process
requirements

* Impact on CO, capture depends in part
on level of integration & capture process
startup timing
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Example of NGCC Cold Startup — Normalized Parameters
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Carbon Capture Technologies — Benefits and Challenges
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Future R&D Recommendations

Dynamic testing and control development

— Example: Carbon Capture Simulation for Industry
Impact (CCSI?)

Carbon-Capture-Simulation-for-Industry-Impact-CCSI2-Steady-State-and-
Dynamic-MEA-Modeling-2017.pdf (hationalcarboncapturecenter.com)

Development of more robust strategies to decouple
carbon capture from transient generator operation

Emission measurement/characterization and control
testing across entire duty cycle

More detailed understanding of degradation pathways
during both transient and non-transient operation



https://www.nationalcarboncapturecenter.com/wp-content/uploads/2021/01/Carbon-Capture-Simulation-for-Industry-Impact-CCSI2-Steady-State-and-Dynamic-MEA-Modeling-2017.pdf
https://www.nationalcarboncapturecenter.com/wp-content/uploads/2021/01/Carbon-Capture-Simulation-for-Industry-Impact-CCSI2-Steady-State-and-Dynamic-MEA-Modeling-2017.pdf
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