

DE-FE0032215

Transformational Nano-confined Ionic Liquid Membrane for Greater than or Equal to 97 Percent Carbon Dioxide Capture from Natural Gas Combined Cycle Flue Gas

Shiguang Li, Weiwei Xu, Qiaobei Dong, Howard Meyer, *GTI Energy* Miao Yu, Fan Wang, Dinesh Behera, *The State University of New York at Buffalo (UB)*

> Net-zero Flexible Power: High Capture Rate Project Review Meeting June 6-7, 2024

GTI Energy: 80-year history of turning raw technology into practical energy solutions

GTI Energy is a leading energy research and training organization

Across the entire energy value chain

World-class facility in Chicago area

CCUS is one of GTI strategic focus areas

Carbon capture

- <u>FE0031946</u>: 20 TPD facilitated transport membrane (FTM) for power plant application
- **FE0032466**: 3 TPD ROTA-CAP for steel plant application
- FE0032463: 3 TPD FTM for cement plant (sub to OSU)
- FE0031598: Bench-scale GO-based membrane
- **FE0032215**: Nano-confined Ionic liquid membrane
- **FE0031730**: Size-sieving adsorbent (sub to UB)

Carbon conversion

- FE0031909: Membrane reactors for conversion of CO₂ to fuels/chemicals
- FE0032246: Converting CO₂ to carbon-negative alternative cement (sub to WashU)
- Carbon dioxide removal (CDR)
 - **FE0031969**: Trapped small amines in capsules (sub to UB)
- Carbon transport and storage
 - E60032239: CarbonSAFE Phase II

Project overview

- Performance period: 3/1/2023-8/31/2024
- Total funding: \$1,250,000 (DOE: \$1,000,000, cost share: \$250,000)
- <u>Objectives</u>: Develop a transformational membrane technology capturing CO₂ from NGCC flue gas, and demonstrate significant progress towards a 40% reduction in the cost of CO₂ capture versus a reference NGCC power plant for the same carbon capture rate

<u>Team</u> :	Member	Roles
	GO GTI ENERGY	 Lead on project management and planning Lead on stability tests, and membrane process modeling Lead on detailed TEA
	Le	Lead on membrane developmentSupporting techno-economic analysis

NGCC = natural gas combined cycle; TEA = Techno-economic analysis

Transformational membrane structure: nanoconfined lonic Liquid (NCIL) membrane

- Nano-confined space between SWCNTs, combined with nano-sized GOQDs with rich oxygen-containing functional groups, stabilizes the amino acid ILs with amine groups during membrane operations
- The enhanced viscosity of NCIL, resulting from the nano-confined space in SWCNT mesh and favorable interactions between rich functional groups on GOQDs and ILs, significantly inhibits N₂ permeation

Membranes are coated on commercial polyether sulfone (PES) hollow fiber substrates

5

Tests with simulated NGCC flue gas: good stability, dry-basis CO₂ purity as high as 98 vol%

Testing conditions

Membrane area, cm ²	75
Temperature, °C	70
Feed CO ₂ concentration, vol%	4.2
Feed pressure, bara	1.0
Permeate pressure, bara	0.15

Testing results

CO ₂ dry-basis purity	CO ₂ capture efficiency	CO ₂ permeance (GPU)	CO ₂ /N ₂ selectivity
98.0 vol%	50%	2,400	2,100

Where do NCIL membranes fall on the Robeson plots?

 Selectivity significantly higher than membranes reported in the literature

Robeson, J. Membrane Sci. 2008, Vol. 320, p390

Note: Polymer data points (red): 100 nm membrane thickness assumed

To use the high selectivity to the greatest extent, water vapor sweep is applied in the permeate side **GTI ENERGY**

Testing conditions

Membrane area, cm ²	75			
Temperature, °C	70			
Feed pressure, bara	1.0			
Permeate pressure, bara	0.15			
Feed composition, vol%				
CO ₂	4.5%			
Water	13.0%			
N ₂	82.5%			
Flow arrangement: co-current flow				
mode (H_2O) vapor and flue gas flowed in				
the same direction)				

A counter-current flow mode enables CO₂ capture officiency as high as 97%

Testing conditions

Membrane area, cm ²	75			
Temperature, °C	70			
Feed pressure, bara	1.0			
Permeate pressure, bara	0.10			
Feed composition, vol%				
CO ₂	5.4%			
Water	9.6%			
N ₂	85%			

Flow arrangement: count-current flow

Results

CO ₂ capture efficiency	97.6%
CO ₂ dry-basis purity, vol%	96.6%

Highly H₂O-selective membranes have been successfully developed to recover H₂O vapor

A highly H₂O-selective membrane was designed to recover majority of the H₂O vapor, which is then recycled to the inlet of the permeate side of the NCIL membrane

Our recently developed H₂O-selective membrane showed high H₂O permeance, high H₂O/CO₂ selectivity, and good stability at design conditions (70°C) during 100-h continuous testing

Initial TEA indicates CO₂ capture cost of \$47.7/tonne at 97% capture (23% reduction versus reference case) GTI ENERGY

* DOE Report 2023/4320 (Revision 4A, issued on Oct. 14, 2022) ¹¹

Challenges to maintain high capture rates and mitigation strategies

1) Stability of the NCIL membrane at NGCC flue gas condition

 B31B.97 stream table shows NGCC flue gas temperature is 101°C – challenging for membrane technology

Mitigation (R&D needs):

- 1a: Optimize operation conditions including cooling flue gas down to 70–90 °C
- Ib: Further optimize membrane structure

2) Cost of the process not in line with expected outcome <u>Mitigation (R&D needs)</u>:

- 2a: Improve separation performance of the membranes
- 2b: Improve process design and equipment selection

Summary of challenges

Consequence

Envisioned technology development path

ENERGY

- GTI Energy and UB are developing a transformational process based on nanoconfined ionic liquid membranes for capturing \geq 97% CO₂ from NGCC flue gas
- Membrane showed CO₂ permeance as high as 2,400 GPU with a CO₂/N₂ selectivity of 2,100 for typical NGCC flue gas
- When water vapor sweep is applied in the permeate side, >95% CO₂ dry-base purity and >97% CO₂ capture rate were achieved with single stage
- Highly H₂O-selective membranes successfully developed to recover H₂O vapor
- Initial TEA indicates CO₂ capture cost of \$47.7/tonne at 97% capture, which is a 23% reduction versus DOE's reference case B31B.97 from a NGCC power plant

Acknowledgements

Financial and technical support

DOE NETL: Andrew O'Palko and Dan Hancu

DE-FE0032215