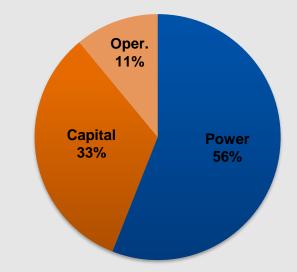

### RTI NAS CO<sub>2</sub> Capture Technology Development History




From lab to large scale demonstration through series of projects

New coal-fired power plants with  $CO_2$  capture at a cost of electricity 30% lower than the baseline cost of electricity from a supercritical PC plant with  $CO_2$  capture, or approximately \$30 per tonne of  $CO_2$  captured by 2030.



### Path to Reducing ICOE and Cost of CO<sub>2</sub> Avoided

- Primarily focused on reducing energy consumption reboiler duty
- Reduce capital expenditure
  - Simplify process arrangement
  - Materials of construction
- Limit operating cost increase



<sup>&</sup>lt;sup>1</sup> Rochelle, G. T. Amine Scrubbing for CO<sub>2</sub> Capture. Science **2009**, 325, 1652-1654.

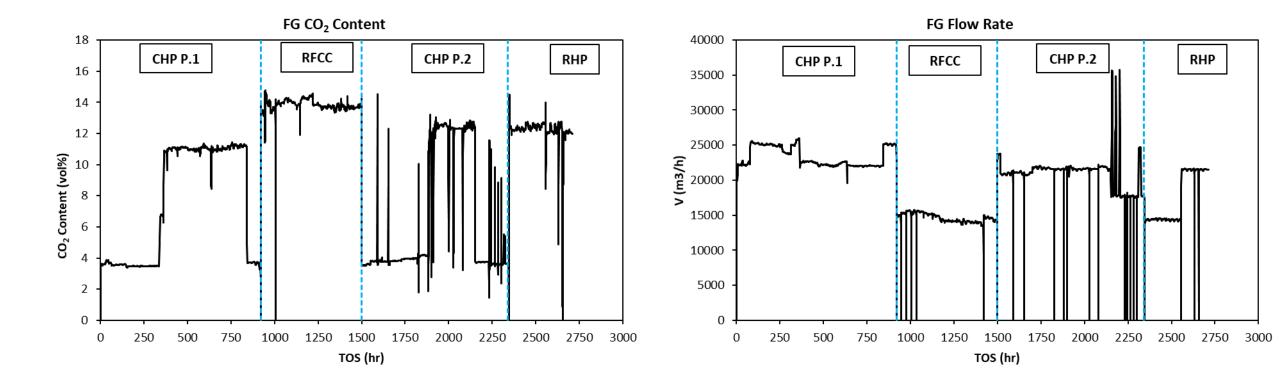
Heat of vaporization of water becomes a negligible term to the heat duty

### Project Summary : DE-FE0031590



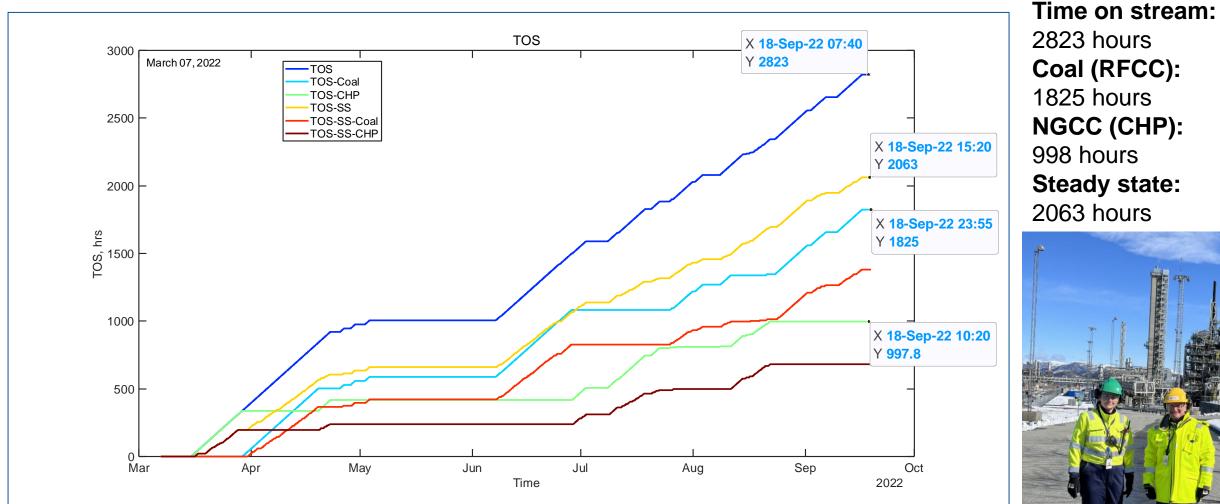
**Description:** Testing and evaluation of transformational non-aqueous solvent (NAS)-based CO<sub>2</sub> capture technology at engineering scale at TCM **Key Metrics** 

- Solvent performance including capture rate, energy requirements, solvent losses
- Solvent degradation, corrosion, emissions
- Technoeconomic and EHS evaluation


### Specific Challenges

- Resolve remaining technical and process risks
- Operate TCM plant within emission requirements
- Minimize rise in absorber temperature
- Maximize NAS performance with existing hardware limitations
- **Timeframe:** 8/8/18 to 06/30/23
- Total Funding: \$17,384,512






## Test Campaign Segments and Flue Gas Characteristics



| Flue Gas       | CO <sub>2</sub> (vol %) | O₂ (vol%) | NO₂ (ppm) | NO (ppm) | SO <sub>2</sub> (ppm) |  |
|----------------|-------------------------|-----------|-----------|----------|-----------------------|--|
| CHP            | 3.9                     | 12.9      | 3.2       | 23.9     | 1.0                   |  |
| RFCC           | 14.7                    | 2.4       | 1.2       | 66.5     | 0.0                   |  |
| CHP w/ Recycle | 12.6                    | 6.1       | 3.0       | 45.4     | 0.8                   |  |
| (RFCC Mimic)   | 12.0                    | 0.1       | 3.0       | 40.4     | 0.0                   |  |
| RHP (aka MHP)  | 13.7                    | 4.6       | 4.6       | 50.9     | 0.4                   |  |
| RHP w/ Recycle | 18.0                    | 4.6       | 5.0       | 3.4      | 0.0                   |  |
| (Cement Mimic) | 10.0                    | 4.0       | 5.0       | 3.4      | 0.0                   |  |

## Time on Stream Highlights





## NGCC SDoE Parametric Testing Results



### **Test Conditions**

| Run | L/G Ratio (kg/kg) | CO₂ Capture<br>Rate (%) | Regen Pressure<br>(barg) |
|-----|-------------------|-------------------------|--------------------------|
| 1   | 4.5               | 95                      | 1.0                      |
| 2   | 4.0               | 95                      | 1.0                      |
| 3   | 3.0               | 85                      | 1.0                      |
| 4   | 3.5               | 90                      | 1.0                      |
| 5   | 3.5               | 85                      | 2.1                      |
| 6   | 4.0               | 90                      | 2.1                      |
| 7   | 3.0               | 95                      | 2.1                      |
| 8   | 2.5               | 90                      | 2.1                      |
| 9   | 3.5               | 95                      | 3.2                      |
| 10  | 3.0               | 90                      | 3.2                      |
| 11  | 2.5               | 85                      | 3.2                      |
| 12  | 4.5               | 85                      | 3.2                      |

sDOE10

NGCC

sDOE11

NGCC

sDOE12

3.2

3.2

85.3

85.3

2.6

4.7

| Run            | Regenerat<br>or<br>Pressure<br>(barg) | Capture<br>Rate | L/G<br>(kg/kg) | Reboiler<br>Temp<br>(Celsius) | Flue gas<br>flow<br>(Sm³/hr) | Observed<br>T_approa<br>ch<br>(Celsius) | Observed<br>SRD<br>(GJ/t-CO <sub>2</sub> ) | SRD (w/<br>5C T<br>approach)<br>(GJ/t-CO <sub>2</sub> ) |
|----------------|---------------------------------------|-----------------|----------------|-------------------------------|------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------------------------|
| NGCC<br>sDOE01 | 1.0                                   | 95.1            | 4.8            | 97.3                          | 26861                        | 15.4                                    | 5.85                                       | 3.60                                                    |
| NGCC<br>sDOE02 | 1.0                                   | 95.4            | 4.2            | 95.7                          | 26907                        | 14.8                                    | 5.33                                       | 3.43                                                    |
| NGCC<br>sDOE03 | 1.0                                   | 85.0            | 3.1            | 89.2                          | 26932                        | 14.4                                    | 4.63                                       | 3.13                                                    |
| NGCC<br>sDOE04 | 1.0                                   | 90.3            | 3.7            | 90.5                          | 26935                        | 14.3                                    | 4.95                                       | 3.30                                                    |
| NGCC<br>sDOE05 | 2.1                                   | 84.9            | 3.7            | 95.0                          | 26927                        | 16.1                                    | 5.32                                       | 3.32                                                    |
| NGCC<br>sDOE06 | 2.1                                   | 90.3            | 4.2            | 96.9                          | 26929                        | 16.7                                    | 5.67                                       | 3.47                                                    |
| NGCC<br>sDOE07 | 2.1                                   | 95.1            | 3.2            | 102.4                         | 26928                        | 15.6                                    | 4.65                                       | 3.14                                                    |
| NGCC<br>sDOE08 | 2.1                                   | 89.8            | 2.6            | 100.7                         | 26930                        | 15.7                                    | 4.43                                       | 3.10                                                    |
| NGCC<br>sDOE09 | 3.2                                   | 95.5            | 3.7            | 107.5                         | 26976                        | 16.9                                    | 4.85                                       | 3.11                                                    |
| NGCC           | 3.2                                   | 90.5            | 3.1            | 104.5                         | 26974                        | 16.8                                    | 4.67                                       | 3.08                                                    |

104.7

99.6

Results

| Impact       |        |  |  |  |  |  |
|--------------|--------|--|--|--|--|--|
| Variable     | Weight |  |  |  |  |  |
| L/G          | 0.287  |  |  |  |  |  |
| Capture rate | -0.034 |  |  |  |  |  |
| Pressure     | -0.025 |  |  |  |  |  |

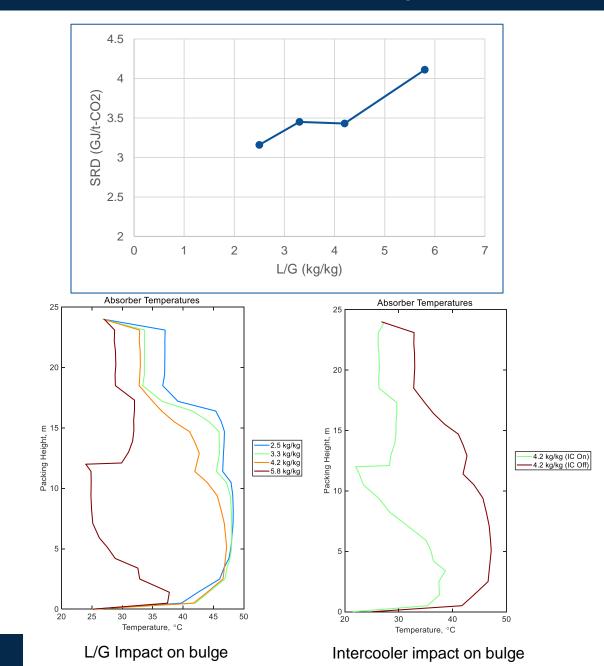
26977

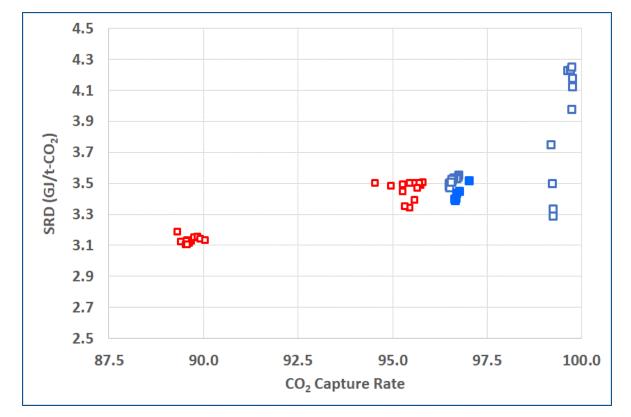
26968

16.8

16.7

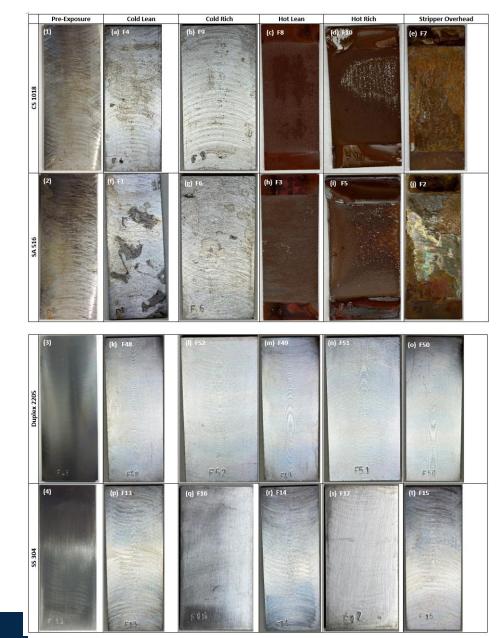
18.0


4.38

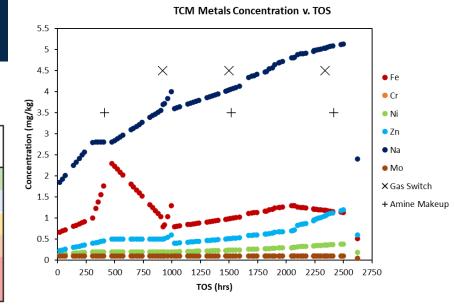

6.22

3.01

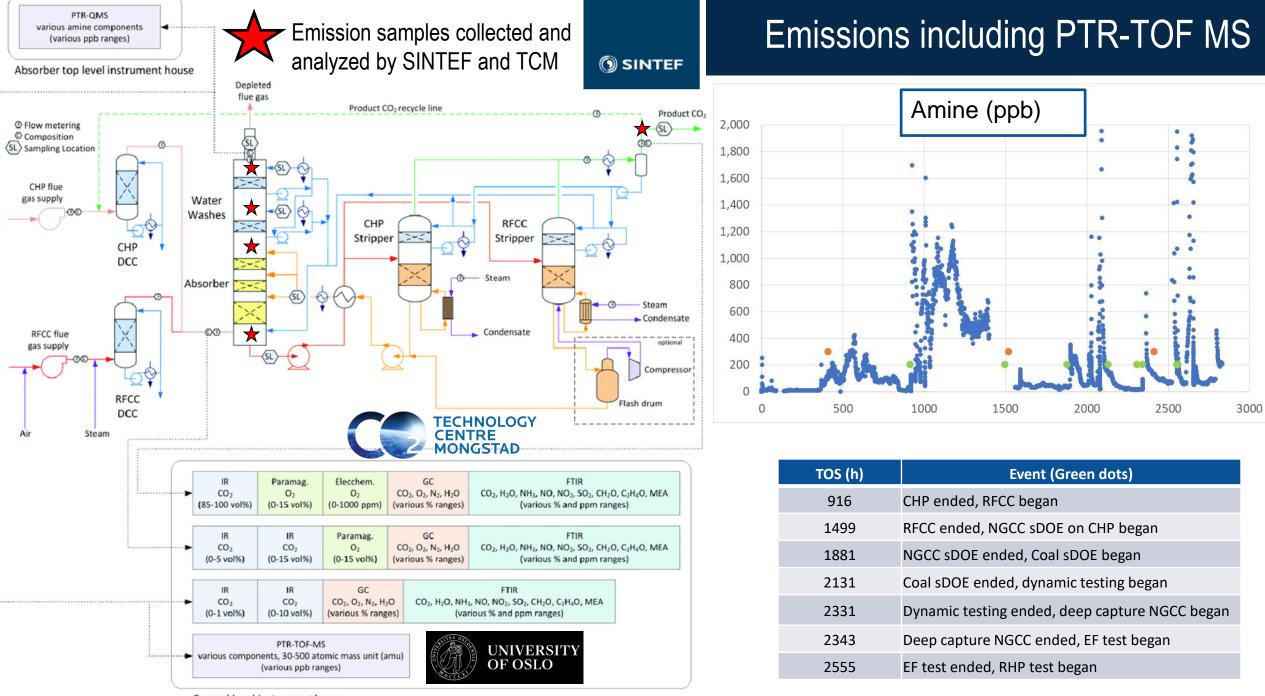
3.69


## NGCC Performance: L/G Optimization






7


# **Corrosion Coupon Testing Results**



| Rating       | Corrosion Rate<br>(µm/yr) |
|--------------|---------------------------|
| Outstanding  | <25                       |
| Excellent    | 25-100                    |
| Good         | 100-500                   |
| Fair         | 500-1000                  |
| Poor         | 1000-5000                 |
| Unacceptable | >5000                     |



|           |                     | Cold Lean (8"<br>Line) | Cold Rich (6"<br>Line) | Hot Lean<br>(8" Line) | Hot Rich<br>(6" Line) | Stripper<br>Overhead<br>(12" Line) |
|-----------|---------------------|------------------------|------------------------|-----------------------|-----------------------|------------------------------------|
|           | CS 1010             | -0.03 ± 0.06           | -0.07 ± 0.08           | 383.02 ±<br>46.83     | Lost                  | -0.51 ± 0.07                       |
| Carbon    | CS 1018             | -0.01 ± 0.14           | 0.01 ± 0.21            | 376.00 ±<br>10.84     | 956.22 ±<br>33.07     | -0.27 ± 0.14                       |
| Steels    | SA 516              | 0.18 ± 0.14            | 0.06 ± 0.21            | 343.21 ± 9.90         | 1167.12 ±<br>40.36    | -0.37 ± 0.14                       |
|           | SA 516 Bent         | 0.12 ± 0.07            | -0.08 ± 0.08           | 414.97 ±<br>64.57     | Lost                  | -0.09 ± 0.04                       |
|           | Duplex 2205         | -0.18 ± 0.14           | -0.21 ± 0.21           | -0.12 ± 0.14          | -0.10 ± 0.21          | -0.08 ± 0.14                       |
| Stainless | Duplex 2205<br>Bent | -0.07 ± 0.06           | -0.07 ± 0.08           | -0.03 ± 0.06          | -0.06 ± 0.08          | 0.00 ± 0.04                        |
| Steels    | SS 304              | -0.02 ± 0.14           | -0.01 ± 0.20           | 0.00 ± 0.14           | 0.03 ± 0.20           | 0.00 ± 0.14                        |
|           | SS 304 Bent         | -0.04 ± 0.06           | -0.03 ± 0.08           | -0.02 ± 0.06          | -0.01 ± 0.08          | -0.02 ± 0.04                       |
|           | SS 316              | -0.03 ± 0.14           | -0.01 ± 0.20           | 0.00 ± 0.14           | 0.02 ± 0.20           | 0.00 ± 0.14                        |
| Resin     | Ultem Resin         | -33.24 ± 5.73          | 20.85 ± 4.30           | Lost                  | Lost                  | 22.37 ± 3.89                       |



Ground level instrument house



|                                 |         |         |         | -                    |               |         |                      |         |         |         |         |         |
|---------------------------------|---------|---------|---------|----------------------|---------------|---------|----------------------|---------|---------|---------|---------|---------|
| Power Plant                     | SC PC   |         |         | NGCC<br>(F-Class CT) |               |         | NGCC<br>(H-Class CT) |         |         |         |         |         |
| Capture Rate, %                 | 90      | 95      | 97      | 99                   | 90            | 95      | 97                   | 99      | 90      | 95      | 97      | 99      |
| Total Gross Power, MWe          | 762     | 756     | 763     | 774                  | 692           | 689     | 687                  | 687     | 946     | 942     | 939     | 939     |
| Net Power, MWe                  | 657     | 648     | 653     | 650                  | 647           | 641     | 635                  | 631     | 888     | 880     | 872     | 866     |
| BEC for Capture System,<br>\$MM | \$226   | \$230   | \$232   | \$236                | \$221         | \$260   | \$256                | \$295   | \$290   | \$340   | \$340   | \$394   |
| TPC, \$MM                       | \$2,085 | \$2,092 | \$2,102 | \$2,130              | <b>\$</b> 935 | \$1,001 | \$1,001              | \$1,075 | \$1,284 | \$1,370 | \$1,378 | \$1,481 |
| TPC, \$/kW                      | \$3,175 | \$3,229 | \$3,219 | \$3,277              | \$1,444       | \$1,562 | \$1,576              | \$1,705 | \$1,445 | \$1,558 | \$1,580 | \$1,711 |
| TOC, \$MM                       | \$2,558 | \$2,567 | \$2,579 | \$2,613              | \$1,166       | \$1,246 | \$1,247              | \$1,336 | \$1,599 | \$1,704 | \$1,743 | \$1,837 |
| TOC, \$/kW                      | \$3,895 | \$3,963 | \$3,950 | \$4,021              | \$1,802       | \$1,944 | \$1,962              | \$2,119 | \$1,800 | \$1,936 | \$1,999 | \$2,122 |
| LCOE (excl. T&S), \$/kW         | \$92.60 | \$94.60 | \$94.30 | \$96.00              | \$59.80       | \$62.50 | \$63.00              | \$65.70 | \$58.60 | \$61.00 | \$61.90 | \$64.50 |
| BESP, \$/t-CO <sub>2</sub>      | \$30.50 | \$30.50 | \$29.80 | \$30.60              | \$47.70       | \$52.00 | \$52.00              | \$57.30 | \$47.40 | \$51.10 | \$51.80 | \$57.50 |

Table 6.1 RTI NAS Case Summary

Coal Baseline DOE B12B-90% \$45.70 NGCC Baseline DOE B31B.90 F-Class-90% \$79.60 NGCC Baseline DOE B32B.90 Case H-Class-90% \$56.00

## Continuation of the Technology Development Path with DOE



**FLECCS** – Dynamic **Capture from NGCC** (2021-2025)

Process intensification to enable flexible capture, reduce capital expense

100 t-CO<sub>2</sub>/day





**TRL 4-5** 

ENERGY EFFICIENCY & RENEWABLE ENERGY



U.S. DEPARTMENT OF

NATIONAL ENERGY TECHNOLOGY LABORATORY

**ENERGY** 



International Paper Projects currently underway sb or recently selected for awarded



11

### Commercialization with SLB

#### News Release

Schlumberger and RTI International Partner to Accelerate the Industrialization of Innovative Carbon Capture Technology

Published: 10/17/2022

### A unique, versatile nonaqueous solvent

SLB and RTI International have partnered to industrialize and scale up an absorption-based carbon capture technology. The proprietary nonaqueous solvent (NAS) can be applied across a broad range of industrial sectors—from cement and steel manufacturing, coal and gas power generation, chemicals, and hydrogen.

With low energy consumption, simple process configuration, low corrosion chemistry, and fast reaction rates, NAS technology reduces energy consumption by up to 40% during CO<sub>2</sub> capture and minimizes both capex and opex compared with traditional solvents.



