

Techno-economic Assessment of EEMPA for CO₂ Separation from Natural Gas Combined Cycle Power Plant (FWP 70814)

> Shuang Xu Yuan Jiang (PI/PM) David J. Heldebrant Charles J. Freeman

Net-zero Flexible Power: High Capture Rate Project Review Meeting Delta Hotel Philadelphia Airport, June 6-7, 2024.

PNNL is operated by Battelle for the U.S. Department of Energy

PNNL's 15-Year Effort in CCS

Building multi-scale, multi-disciplinary teams to bridge the knowledge gaps and reinvent solvent-based CCS from the ground up.

Fundamental research in DOE's Office of Science & Applied research in DOE's Office of Fossil Energy.

The Carbon Capture, Utilization and Storage R&D Program advances safe, cost-effective, capture and permanent geologic storage and/or use of CO2.

Solvent Molecular Design **Property Prediction**

Kinetics

Column (WWC) 1 liter

Lab Continuous Flow System (LCFS) 5 liter

Process Design, Optimization Techno-economic Analysis

Synthesis, Property Measures **Performance Testing**

Industry Partnership

Research Objective: Achieve Potential Step-Change Reductions in Total Costs of Capture

PNNL's goal is to make step-change progress towards the DOE target of \$30/tonne CO₂ well-before year 2030.

Supercritical PC power plant

* DOE baseline REV3 pricing used until 2020, REV4 pricing implemented in 2021.

Project Overview

- **Total Project Funding**: \$106k (Rescoping of remaining funds from Fluor Solvent Testing at Technology Center Mongstad)
- Overall Project Performance Date: 10/01/2023-09/30/2024
- Task 1 (Completed): Assess and publish the economic performance of PNNL's leading CO₂ capture solvent (EEMPA) for
 - Natural gas power flue gas conditions at high capture rates and
 - Potentials to achieve zero- and negative-emission comparable to DAC (100 ppmv of CO₂ in the exhaust gases)
- Task 2 (In Progress): Provide modeling and data support as part of a preliminary proposal for EEMPA testing at the Technology Center Mongstad (TCM)

What Are CO₂BOLs (Binding Organic Liquids)?

- Single-component zwitterionic liquids (when saturated with CO₂), (no blends/additives) – simpler, lower sensible heat, faster kinetics
- Can operate with minimal water "water lean" (1-5 wt%) practical water uptake from flue gas, water wash capable
- Can exhibit viscosity increases with loading (early versions > 3000cp) New formulations are <50 cP fully saturated with CO₂
- Multiple chemical functionalities available chemical durability/toxicity are functional group dependent
- ► CO₂BOLs Families

Liquids)? D_2),

Using similar approach to evaluate the economic feasibility of EEMPA for capturing 90%+ CO₂ from NGCC power plant

Jiang et al. (2022), doi.org/10.1016/j.jclepro.2022.135696.

Techno-economic Analysis *Using Validated Model and DOE Baseline*

Pacific

Northwest

Jiang et al. (2021), doi.org/10.1016/j.ijggc.2021.103279.

Thermodynamic Model Developed Based on Experimentally Measured Property Data

Property Package: ENRTL-RK

Pacific

Northwest

Reactions: 2 EEMPA + $CO_2 \leftrightarrow EEMPA^+ + EEMPACOO^-$

 $EEMPA + CO_2 + H_2O \leftrightarrow EEMPA^+ + HCO_3^-$

Physical Properties ρ, σ, μ(γ), FP, etc.

Pressure Volume Temperature (PVT Cell)

Wetted Wall Column (WWC)

Jiang et al. (2021), doi.org/10.1016/j.ijggc.2021.103279.

Process Model Developed in Aspen Plus and Validated Using Continuous Flow System Data

Testing at PNNL's 5L LCFS

Absorber: 3" diameter, 20" height Stripper: 3" diameter, 24" height Packing: 0.24" Pro-Pak

Variable	Measured	Modeled
Rich CO ₂ loading (mol/mol solvent)	0.0933	0.1026
Rich H ₂ O loading (wt%)	0.0149	0.0139
CO ₂ capture rate (%)	95.8	94.4

> Testing at RTI International's 50L BsGAS

Zheng et al. (2021), doi.org/10.1039/D0EE02585B.

0 4.5 5.0 5.5 6.0 6. Measured SRD (MJ/kg CO2)

Techno-Economic Analysis

Assessing the cost and energetics of simple stripper (SS) and twostage flash (TSF) configuration using Rev4 Case B32B baseline

- H-Frame NGCC Cases •
- Net power output = 883 MW
- Pricing basis of Dec 2018 •

*DOE/NETL - 2023/4320

Process Optimization Example: 90% Capture with SS

- loading Lean
- duty.

Higher capture rate requires: •

Pacific

- Lower lean loading (due to VLE limitation) \bullet
- Lower regeneration pressure (to keep regeneration temperature below 130 °C) •

and regeneration pressure are the top two key design variables, of which optimum varies with capture rates.

Higher stripper pressure (SP, psi) leads to lower compression duty but higher reboiler duty and chilling

Higher lean loading (LL, mol CO₂ /mol solvent) leads to lower fuel cost but higher capital cost.

EEMPA for High Capture Rates

TEA suggests cost advantage at capture rate <95%

	Cansolv			EEMPA		
Carbon capture rate (%)	90	95	97	90	95	97
Operating condition						
Lean loading (mol CO ₂ /mol solvent)				0.05	0.05	0.038
Regeneration pressure (psi)				18 / 76	18 / 76	15 / 76
Flue gas chilling temperature (°C)				12.6	10.4	10.4
Performance measures						
L/G ratio (wt/wt)				2.11	2.61	3.37
Reboiler duty (GJ/tonne CO ₂)	2.90	2.89	2.97	2.67	2.73	3.16
Equivalent work (kJ/mol CO ₂)						
Reboiler	30.3	30.2	31.0	23.8	24.3	28.2
Compression	13.0	13.0	13.0	11.8	12.1	14.1
Total	50.2	50.3	51.6	44.7	46.4	52.9
Economic measures (2018 pricing basis)						
Total plant cost of CCS (MM\$)	496	517	529	500	548	621
Cost of electricity (\$/MWe-hr)	61.6	62.5	63.1	60	61.3	62.8
Carbon capture cost (\$/tonne CO ₂)	56	55.3	55.5	53	53.4	56.4

EEMPA for achieving < 100 ppmv CO₂ in clean flue gas comparable to DAC – VLE Limitation

Pacific

Northwest

Extremely low solvent lean loading is required to achieve 99.8% CO2 removal, which results in expensive solvent regeneration. A combination of both temperature and pressure swing regeneration is required.

0.1

30 °C P CO2 90 °C P CO2 120°C P CO2 -120 °C P Total 90 °C P Total

EEMPA for Zero- and Negative-Emissions NGCC Plants and Comparison with MEA

Carbon capture cost

- Represents an average cost of reducing CO₂ concentration from a starting point (4% in NGCC) flue gas) to a targeted capture rate
- Is a key economic metric for evaluating **post combustion carbon capture** and comparing different technologies with the same starting and ending CO₂ concentration

	Capture rate (%)	90	95	97	99.14	99.78	99.80
MEA	Carbon capture cost (\$/tonne CO ₂)	73.9	75.1	77.0	79.5	87.5	88.6
EEMPA	Carbon capture cost (\$/tonne CO ₂)	53.0	53.4	56.4	62.7	73.3	74.7

EEMPA has much **lower capture cost** than MEA from 90% capture rate to zero- and negative-emissions.

EEMPA for Zero- and Negative-Emissions NGCC Plants and Comparison with DAC

Marginal carbon capture cost

- Represents the rate of change in carbon capture cost for each additional amount of CO₂ captured (i.e. from 400 ppm to 100ppm CO_2 in the exhaust gas).
- Is a key economic metric for comparing post combustion carbon capture with direct air capture, of which starting points are quite different (4% vs 400 ppm).

	Capture rate (%)	95	97	99.14	99.78	99.80
MEA	Marginal cost (\$/tonne CO ₂)	96.7	143.9	261.8	1,173	3,747
EEMPA	Marginal cost (\$/tonne CO ₂)	61.5	194.9	351.4	1,691	8,868

Marginal cost
$$\Big|_{x2} = \left. \frac{\partial C}{\partial x} \right|_{x2} \approx \frac{C_{x2} * x_2 - C_{x1} * x_1}{x_2 - x_1}$$

x=CO₂ capture (%); x₂ is a higher level of CO₂ capture than x₁

Both MEA and EEMPA were not designed and optimized for achieving 100 ppmv CO₂ in exhaust gas.

Challenges and R&D Needs for high capture rate & flexible operation

- Optimization
- Intensification
- Integration
- Dynamic control

Questions & Discussion

The authors would like to acknowledge the US Department of Energy Office of Fossil Energy FWP 70814 (managed by NETL) for funding this project and the Pacific Northwest National Laboratory (PNNL) for facilities. The authors would also like to thank Robert Perry for insights into diamine behavior and fruitful discussions. Battelle proudly operates PNNL for DOE under Contract DE-AC05-76RL01830.

