

Zero- and Negative-Emissions Fossil-Fired Power Plants Using Post-Combustion CO₂ Capture

Tianyu Gao* and Abhoyjit Bhown

Meeting on Net Zero Flexible Power: High Capture Rate Philadelphia, PA June 6-7, 2024

in X f www.epri.com © 2024 Electric Power Research Institute, Inc. All rights reserved.

*tgao@epri.com

EPPI

CO_2 Capture Rate – 90% or 99%?

- CO₂ capture processes have been generally designed to capture ~90% of the CO₂ from power plant flue gas
 - This ~90% capture rate standard is often considered to give the lowest unit CO₂ capture cost (\$/t CO₂ captured)
- Most integrated assessment models limit CO₂ capture to 90%, and assume the remaining ~10% (~1 Gt/y for the current global power generation mix) needs to be offset by negative-emissions technologies, such as direct air capture, in order to achieve net zero
 - For lowest cost for economy-wide net-zero emissions, the optimum CO_2 capture rate for flue gas can be higher than 90%

Pilot Demonstration of High CO₂ Capture Rate

Pilot Plant	Flue Gas Condition	CO ₂ Capture Rate	Solvent	Time
NCCC	Coal	99.9%	MEA	2018
	Coal	99.1%	PZ	2019
	NGCC	95.8%	PZ	2020
TCM	NGCC	~99%	MEA	2021
	NGCC	~98%	PZ/AMP	2021
	Coal	97.7%	NAS	2022
	NGCC	99.8%	NAS	2022

Objective of This Study

BA0

- Obtain a cost curve from 90% to nearly 100% CO₂ capture
- Potentially refine role of CCS in integrated assessment models and role of fossil fuels in future energy mix
- Details in Y. Du, T. Gao, G. T Rochelle, A.S. Bhown Int J of GHG Control, 111, 105473 (2021)

$\langle \sim$	Coal flue gas (CO ₂ conc.: 12.5%)	~99.7% CO₂ capture		Zero-emission	
	NGCC flue gas (CO ₂ conc.: 4%)	~99.0% CO ₂ capture	Exhaust flue gas (CO ₂ conc.: 0.04%)		Air (CO ₂ conc.: 0.04%)

"Zero Emission" means quantity of CO₂ in air intake equals quantity of CO₂ in exhaust flue gas discharged

© 2024 Electric Power Research Institute, Inc. All rights reserved.

BA0 We didn't define zero emission as ppm in = ppm out since the flowrates in and out can be different. Instead, we used the quantity of CO2 in = quantity of CO2 out (using a ratio of CO2/N2). Bhown, Abhoyjit, 2024-06-03T21:36:07.659

Methodology

Solvent and model: MEA model:

– 30 wt% MEA, Developed by Carbon Capture Simulation for Industry Impact (CCSI²) in Aspen Plus

Process optimization parameters:

- Solvent flow rate
- Absorber height
- Lean loading
- Temperature of solvent
- Solvent intercooling configurations

Reference cases:

- 650 MW (net) supercritical coal-fired power plant Case B12A in DOE/NETL 2019 baseline report
- 646 MW (net) NGCC power plant Case B31A in DOE/NETL 2019 baseline report

Cost methodology:

DOE/NETL 2019 guideline (Revision 4)

CO₂ Capture Cost at Different Capture Rates – Coal-fired plants

For coal plants to achieve zero-emission, the cost is ~5% higher than that at 90% capture To achieve negative emission, the cost is ~12% higher

BA0

Elosi

BA0 Be sure to point out negative emissions too and what that means. Bhown, Abhoyjit, 2024-06-03T21:36:35.297

CO₂ Capture Cost at Different Capture Rates – NGCC

Process configuration: Absorber with simple solvent intercooler

Slide 7

BA0 Provide numbers for highlighted text Bhown, Abhoyjit, 2024-06-03T21:38:10.225

Intercooling configurations for Capture from NGCC

With pump-around intercooling, the cost for NGCC to achieve zero-emissions is 7.6% higher than 90% capture

Importance of Solvent Intercooling for High Capture Rate (NGCC)

	No intercooler	Simple intercooler			
CO ₂ capture rate (NGCC)	99.0%				
Height(ft)	100				
L/G (kg/kg)	3.5	1.4			
Diameter (ft)	80.5	69.2			
Reboiler duty (GJ/t CO2)	8.49	4.41			

Marginal CO₂ Capture Cost

- Although increasing the level of CO₂ capture from 90% to that at zero-emissions has a small effect on the average unit cost, the marginal cost may increase rapidly past a certain level of CO₂ capture.
- It is important to determine this limiting level of CO₂ capture for CCS at which the marginal cost becomes higher than the cost of using DAC to remove CO₂ from the atmosphere. (i.e., how much do we need to rely on DAC to achieve zero-emissions for power plants?)

$$Marginal \ cost|_{x2} = \left. \frac{\partial C}{\partial x} \right|_{x2} \approx \frac{C_{x2} * x_2 - C_{x1} * x_1}{x_2 - x_1}$$

 $x = CO_2$ capture (%); x_2 is a higher level of CO_2 capture than x_1

 $C = CO_2$ capture cost

Marginal CO₂ Capture Cost vs. DAC Cost

CO₂ capture rate

- As a novel technology which has not been demonstrated at scale, the cost estimate for DAC has a high degree of uncertainty
- At high capacity factor (CF), the marginal cost of CCS at the rate for zero-emission is comparable to the average claimed cost for DAC
- When CF is low, it may be beneficial to couple CCS with DAC to fully decarbonize PC and NGCC plants

	95% capture		Zero-emission (400 ppm CO ₂ in exhaust gas)		Negative-emission (100 ppm CO ₂ in exhaust gas)	
Flue Gas	РС	NGCC	РС	NGCC	PC	NGCC
Marginal cost at this capture rate $(\frac{1}{2})^*$	\$75	\$124	\$278	\$354	>\$1000	

*Based on CF of 0.85. At CF of 0.5, the costs would be 60-70% higher

© 2024 Electric Power Research Institute, Inc. All rights reserved.

High Capture Rate of Non-aqueous Solvent (NAS)

Engineering Scale Testing of Transformational NAS-Based Carbon Dioxide Capture Process at Technology Centre Mongstad (DE-FE0031590)

Key Metrics

- Solvent performance including capture rate, energy requirements, solvent losses
- Solvent degradation, corrosion, emissions
- Technoeconomic and EHS evaluation
- Achieved 90%-99% and 90%-97.5% removal on NGCC and PC plant conditions using TCM equipment

NAS- High Capture Tests

NGCC conditions

Regenerator Pressure = 1.95 – 4.4 bar Reboiler Temperatures = 88.4 – 113.5 C

13

Regenerator Pressure = 4.2 bar Reboiler Temperatures = 106 – 114 C

Techno-economic Analysis and High Capture Rate

- RTI-NAS technology achieved 90% capture at a cost of 30.5 and 47.7 \$/t for SC PC and Fclass NGCC
- For PC, cost of capture is 2% less at 97% and about the same at 99% capture
- For NGCC, cost of capture is 9% higher around 95-97% and 20% higher at 99% capture

Power Plant	РС				NGCC, F-Class				
Capture Rate, %	90	95	97	99	90	95	97	99	
Total Gross Power, MWe	762	756	763	774	692	689	687	687	
Net Power, MWe	657	648	653	650	647	641	635	631	
BEC for Capture System, \$MM	226	230	232	236	^{BPO} 221	260	256	295	
Total Plant Cost, \$MM	2,085	2,092	2,102	2,130	935	1,001	1,001	1,075	
Total Overnight Cost, \$MM	2,558	2,567	2,579	2,613	1,166	1,246	1,247	1,336	
Levelized Cost of Electricity (\$/kW)	92.6	94.6	94.3	96	59.8	62.5	63	65.7	
Cost of CO ₂ Captured, \$/t CO ₂	30.5	30.5	29.8	30.6	47.7	52.0	52.0	57.3	

© 2024 Electric Power Research Institute, Inc. All rights reserved.

BA2

Slide 14

- **BPO** Please check Net Power for 97 and 99% Capture for PC. It is higher then 95% Capture case. Babul Patel, 2024-05-24T16:04:05.512
- **BP1** Suggest to spell out TPC, TOC, T&S in footnote for clarity. Babul Patel, 2024-05-24T16:41:15.919
- **BA2** Possible to calculate marginal cost and marginal avoided cost? Also, what's the % capture that corresponds to zero emission in these tables?

Bhown, Abhoyjit, 2024-06-03T21:57:48.677

Summary

- It is technically feasible for both PC and NGCC power plants to achieve zero emissions and negative emissions using CCS (~400 ppm CO₂ in exhaust gas).
- Solvent intercooling is important at high CO₂ capture rate, especially for NGCC
- At high plant capacity factor (CF), PC and NGCC plants can achieve zero-emissions with CCS alone at competitive costs
- When CF is low, it may be beneficial to couple CCS with DAC to fully decarbonize PC and NGCC plants (as long as DAC developers can demonstrate the cost they claim)
- EPRI has extended the high capture rate analysis for other solvents as well as hydrogen production (SMR & ATR)

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2024 Electric Power Research Institute.