

The prospects of flexible natural gasfired CCGT within a green taxonomy

Mai Bui,^{1,2} Nixon Sunny,^{1,2} Niall Mac Dowell^{1,2,*}

1 Centre for Environmental Policy, Imperial College London

2 Centre for Process Systems Engineering, Imperial College London

m.bui@imperial.ac.uk

U.S. DOE Net-zero Flexible Power: High Capture Rate Project Review Meeting, 6th June 2024

Flexible CCS in future electricity systems

Imperial College London

To accommodate

intermittent

renewables, fossil

fuel power plants intermittent renewables, fossil $\frac{6}{9}$ $\frac{30000}{20000}$ fuel power plants \sum_{10000}^{∞} will need to operate $\overline{}$ flexibly.

■ Nuclear ■ CCGT ■ OCGT ■ Coal-PostCCS ■ CCGT-PostCCS ■ Wind-Onshore ■ Wind-Offshore ■ Solar ■ Interconnection

Bui, M. & Mac Dowell, N., editors, (2020). Carbon Capture and Storage, Royal Society of Chemistry, UK. https://doi.org/10.1039/9781788012744. Mac Dowell, N. & Staffell, I. (2016). International Journal of Greenhouse Gas Control, 48, Part 2 (Flexible operation of carbon capture plants), 327–344. 2

Flexibility of power plants with CCS

Rise in the frequency of start-up and shut down cycles will be expected with higher levels of intermittent renewables.

 $CO₂$ emissions, it will undermine the If this significantly increases $CO₂$ value proposition of CCS.

> Need to ensure CO $_2$ emissions $\hphantom{1}$ reduction requirements are being met.

Technology development & delivery

Brandl, P., Bui, M., Hallett, J. P. & Mac Dowell, N. (2021). IJGGC, 105, 103239. Danaci, D., Bui, M., Petit, C. & Mac Dowell, N. (2021). DOI: 10.1021/acs.est.0c07261

Bui, M., et al., (2020). International Journal of Greenhouse Gas Control, 93, 102879.

<u>4</u> EAGHG, 2022. Start-Up and Shutdown Protocol for Natural Gas-Fired Power Stations with CO₂ Capture", technical report 2022-08, 2022.

Pilot & demonstration studies of flexible CCS operation

Imperial College

London

Flexibility of power plants with CCS

Mac Dowell, N. & Staffell, I. (2016). International Journal of Greenhouse Gas Control, 48, Part 2 (Flexible operation of carbon capture plants), 327–344.
Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering,

Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering, 74, 169–183.

Bui, M., et al., (2020). International Journal of Greenhouse Gas Control, 93, 102879.

Flexible operation of a demonstrationscale CO₂ capture plant

Bui, M., Flø, N. E., de Cazenove, T., Mac Dowell, N., (2020). International Journal of

Greenhouse Gas Control, 93, 102879.

In 2020, we studied the effect of start-up & shut down on CO_2 emissions at $\begin{array}{|c|c|}\hline \text{\color{red}{\large{\bf{I}}}} & \text{\color{red}{\large{Co}}}\hline \end{array}$

Imperial College

London

TCM.

Studying the following: (i) hot vs cold start-up, (ii) timing of steam availability (conventional vs preheat vs delayed), (iii) solvent inventory capacity, (iv) start-up solvent loading/composition.

TCM CO₂ capture facility, Mongstad Norway

y, Mongstad Norway
 Combined heat and power (CHP) mode

• Flue gas from a natural-gas fired CHP plant

• Capture capacity of 80 tonnes CO₂ per day

• CESAR-1: 25 wt% AMP + 9 wt% PZ

• Product CO₂ **y, Mongstad Norway**
 Combined heat and power (CHP) mode

• Flue gas from a natural-gas fired CHP plant

• Capture capacity of 80 tonnes CO₂ per day

• CESAR-1: 25 wt% AMP + 9 wt% PZ

• Flow metering

• Composition **y, Mongstad Norway**
 combined heat and power (CHP) mode

• Flue gas from a natural-gas fired CHP plant

• Capture capacity of 80 tonnes CO₂ per day

• CESAR-1: 25 wt% AMP + 9 wt% PZ

• Product CO₂

• Product CO₂
 TCM CO₂ capture facility, Monetary

Absorber Stripper

3.55 m x 2 m 2.2 m diam.

18 8

Flexipac 2X Flexipac 2X

(structured) (structured) Washes $\begin{array}{|c|c|}\n\hline\n\textbf{1} & \textbf{1} & \textbf{2} & \textbf{3} & \textbf{4} & \textbf{5} & \textbf{6} & \textbf{7} & \textbf{8} & \textbf{10} & \textbf{1$ **TCM CO₂ capture facility**

Absorber Stripper
 Absorber Stripper
 Absorber Stripper
 Absorber Stripper
 S Flexipac 2X
 CHP
 CHP

T1.6 – 78.6
 3.5 – 4.3

2.5 – 6.3

CHP flue gas supply

T1.6 – 78.6

2.5 – 6 lege I CM CO₂ Capture TacIIII

Absorber Stripper

msions 3.55 m x 2 m 2.2 m diam.

18 8

Flexipac 2X Flexipac 2X (structured) (structured) Water

Mashes

CHP

mole %

1.6 – 78.6

3.5 – 4.3

2.5 – 6.3

2.5 – 14.4

2.5 – **CO₂** 12.5 – 14.4

Absorber Stripper

ing height (m) 18 8

ing type Flexipac 2X Flexipac 2X

(structured) (structured) Washes

We gas CHP

Nonet mole %

N₂ 71.6 – 78.6

CO₂ 3.5 – 4.3

Page 12.5 – 14.4

CO₂ 12.5 – Combined heat and power (CHP) mode **Absorber Stripper**
 Absorber Stripper
 ensions $3.55 \text{ m} \times 2 \text{ m}$ 2.2 m diam.

 18 8
 Elexipac 2X Flexipac 2X

(structured) (structured) Water
 CHP

mole %
 71.6 – 78.6
 3.5 – 4.3

2.5 – 6.3
 12.5 – 14. Absorber Stripper **Absorber** Stripper Capture capacity of 80 tonnes $CO₂$ per day Absorber Stripper

section dimensions $3.55 \text{ m} \times 2 \text{ m}$ 2.2 m diam.

mg height (m) 18 8

Flexipac 2X Flexipac 2X (structured) (structured)

washes

9 gas CHP

ponent mole %

N₂ 71.6 – 78.6

12.5 – 4.3

1₂O 2.5 – 6. Cross section dimensions 3.55 m x 2 m 2.2 m diam. Packing height (m) \vert 18 \vert 8 Packing type **Packing type Packing type** (structured)

Water Flue gas cHP component mole % N_2 71.6 – 78.6 Steam $CO₂$ $3.5-4.3$ \mathbf{O}_2 | 12.5 – 14.4 Condensate **ECHNOLOGY CENTRE 1ONGSTAD** RCC mode: gas 12 mol% CO₂, captures 275 tCO₂/day \overline{C}

The 18 m packing height used for these test corresponds to the bottom two beds β Total height of all three beds = 24 m

8 Bui, M., Flø, N. E., de Cazenove, T., Mac Dowell, N., (2020). International Journal of Greenhouse Gas Control, 93, 102879.

Start-up and shut down tests at TCM

Hot start-up and shut down with 53 m^{3} solvent inventory 80000 Shut down $\frac{1}{2}$ $\frac{1}{2}$ Reboiler temperature EXECUTE TO MANUSHUM COVERED TOO CONTROL TO BUT TOO Start up **Shut down** Shut down $\frac{1}{2}$ $\frac{1}{2}$ Start up **Reboiler temperature** Shut down 0.45 $\frac{1}{2}$ 0.45 $\frac{1}{2}$ 70000 Ō 0.4 **Steam flow** Rich CO₂ loading $\left[\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array}\right]_{\begin{array}{c} \begin{array}{c} \end{array} \\ \end{array}$ 60000 100 Inlet flue gas flow 50000 0.3 80 CO₂ capture rate **CO2** Lean solvent flow rate 40000 60 0.2 30000 **Lean CO₂** loading $\begin{array}{|c|c|c|c|c|} \hline \multicolumn{1}{|c|}{\text{1}} & \multicolumn{1}{|c|}{\text{1}} & \multicolumn{1}{|c|}{\text{2}} & \multicolumn{1}{|c|}{\text{3}} & \multicolumn{1}{|c|}{\text{4}} & \multicolumn{1}{|c|}{\text{5}} & \multicolumn{1}{|c|}{\text{5}} & \multicolumn{1}{|c|}{\text{6}} & \multicolumn{1}{|c|}{\text{5}} & \multicolumn{1}{|c|}{\text{6}} & \multicolumn{1}{|c$ 20000 0.1 \bullet 20 10000 0.05 \bullet 0 23:00 07:00 11:00 15:48 20:36 06:12 11:00 24-11 11:00 15:00 24-11 19:00 25-11 03:00 25-11 11:00 25-11 01:24 $24 - 11$ $24 - 11$ $24 - 11$ $25 - 11$ $24 - 11$ $24 - 11$ $25 - 11$ $25 - 11$

Start up: Flue gas flow is turned on, steam flow begins earlier, at same time, or delayed.

Flue gas flow rate (Sm³/h), Solvent flow rate (kg/h)

Shut down: Flue gas flow ramps down, steam flow rate continues until target solvent loading is achieved.

Solvent

Cold vs hot start-up

Key learnings

- High capture rates above 90% is techno-economically feasible (at steady state).
- During dynamic operation, 90% capture rate is feasible with load following regimes (e.g., ramp up/down) and hot start-up and shut down.
- During cold start-up and shut down, $CO₂$ capture rates can reduce to 50% or lower.
- During cold start-up and shut down, CO₂ capture rates can reduce to 50% or lower.
• Increased start-up and shut down cycles could increase CO₂ emissions of a CCGT significantly.

Bui, M., et al., (2020). International Journal of Greenhouse Gas Control, 93, 102879.

IEAGHG, 2022. Start-Up and Shutdown Protocol for Natural Gas-Fired Power Stations with CO₂ Capture", technical report 2022-08, 2022.

The EU green taxonomy

Provides financial firms guidance on which activities qualify as being "green".

guidance on which activities
qualify as being "green".
Technology-agnostic
emissions threshold of 100
kg CO₂ eq/MWh for
electricity generation, heat
production and co-
generation of heat and
electricity.
For hydrogen pr Technology-agnostic emissions threshold of 100 kg CO $_2$ eq/MWh for $\hskip1cm \blacksquare$ electricity generation, heat production and cogeneration of heat and electricity.

For hydrogen production, the lifecycle GHG emissions threshold needs to be lower eq/t ${\sf H}_2$, which favours green and blue hydrogen.

EU taxonomy for sustainable activities, https://finance.ec.europa.eu/sustainable-finance/toolsand-standards/eu-taxonomy-sustainable-activities_en

https://futureofsustainabledata.com/taxomania-an-international-overview/.

Carbon capture & storage: Green taxonomy

To determine the eligibility of a combined cycle gas turbine (CCGT) power plants within any future sustainable green taxonomy.

Imperial College **Carbon capture & storage: Green taxonomy**

To determine the eligibility of a combined cycle gas turbine (CCGT) power

plants within any future sustainable green taxonomy.

Evaluated the effect of the fol Evaluated the effect of the following factors on the $CO₂$ intensity of electricity generation by a CCGT power plant: Imperial College **Carbon capture & storage: Green**

To determine the eligibility of a combined cycle gas turbine (CCGT

plants within any future sustainable green taxonomy.

Evaluated the effect of the following factors o College **Carbon capture & storag**
mine the eligibility of a combined cycle gas ture
ithin any future sustainable green taxonomy.
ed the effect of the following factors on the CO
on by a CCGT power plant:
ral gas supply ch Imperial College **Carbon capture & storage: (**

To determine the eligibility of a combined cycle gas turbine

plants within any future sustainable green taxonomy.

Evaluated the effect of the following factors on the CO₂

-
- $CO₂$ capture rate;
-

storage

• Number and type (e.g., cold vs hot) of start-up and shut down cycles.

At steady state operation, a CCGT-CCS plant using UK gas would need to capture 82.5% of the CO₂ to meet the $\qquad \qquad_{\odot}$ \qquad 95 l 100 kg CO₂eq/MWh_{el} criteria.

The steady state CO₂ intensity of a $\frac{5}{8}$ Capture 02.5% of the CO₂ to meet the

100 kg CO₂eq/MWh_{el} criteria.

The steady state CO₂ intensity of a

CCGT-CCS using UK gas with a 90%

capture rate is **75.2 kg CO₂eq/MWh_{el}.** capture rate is **75.2 kg CO₂eq/MWh_{el}.** $\frac{1}{2}$ $\frac{1}{85}$ Coo plant doing o't gas would hood to
capture 82.5% of the CO₂ to meet the
100 kg CO₂eq/MWh_{el} criteria.
The steady state CO₂ intensity of a
CCGT-CCS using UK gas with a 90%
capture rate is **75.2 kg CO₂eq/MWh_{el}**

Natural gas CCGT-CCS

Carbon footprint of CCGT-CCS (kg CO₂, eq/MWh)

UK supply chain carbon footprint of natural gas = 4.9 kg CO_2 eq/GJ $\left\vert \begin{array}{cc} \text{---} & \text{UK gas supply} \\ \text{CD} & \text{Global average gas supply} \end{array} \right\vert$

Using UK natural gas for SMR retrofitted with CCS and capturing 90% CO₂ to produce hydrogen for a steady $\sqrt{2}$ $\sqrt{95}$ state CCGT results in a CO₂ intensity $\frac{1}{2}$ / of **103 kg CO₂ eq/MWh_{el}.** CO₂ to produce nydrogen for a steady
state CCGT results in a CO₂ intensity
of **103 kg CO₂ eq/MWh_{el}.**
To satisfy the green taxonomy, need to
use: (i) >91% CO₂ capture rate Using UK natural gas for SMR

retrofitted with CCS and capturing 90%

CO₂ to produce hydrogen for a steady

state CCGT results in a CO₂ intensity

of **103 kg CO₂ eq/MWh_{el}.**

To satisfy the green taxonomy, need to

use: (i) >91% CO $_2$ capture rate, $\hskip1cm \Box$ (ii) reduce natural gas supply chain emissions, or (iii) use green hydrogen.

Assuming a $CO₂$ capture rate of 95% could achieve 80 kg CO₂ eq/MWh_{el} with a blue hydrogen-CCGT.

Hydrogen CCGT-CCS

Carbon intensity of blue hydrogen-CCGT (kg CO₂eq/MWh)

Gross electricity supply and average annual capacity factor of UK gas-CCGT plants

Imperial College London

17 https://www.gov.uk/government/statistics/electricity-chapter-5-digest-of-unitedkingdom-energy-statistics-dukes

Flexibility Requirements of gas power plants

Effect of start-up & shut down on CCGT-CCS emissions

The EU taxonomy proposes an overarching, technology-agnostic emissions threshold of 100 kg CO $_2$ eq/MWh $\,$ for electricity generation, heat production and co-generation of heat and electricity.

19 M. Bui, N. Sunny and N. Mac Dowell, (2023), The prospects of flexible natural gas-fired CCGT within a green taxonomy. iScience, 26, 107382. https://doi.org/10.1016/j.isci.2023.107382

Effect of start-up & shut down on CCGT-CCS emissions

The EU taxonomy proposes an overarching, technology-agnostic emissions threshold of 100 kg CO $_2$ eq/MWh $\,$ for electricity generation, heat production and co-generation of heat and electricity.

As the number of SUSD cycles increases, the CO $_2$ emissions intensity becomes increasingly higher, and the capacity factor reduces. Higher CO $_2$ capture rates ensures that taxonomy emissions threshold can be met during flexible operation.

20 M. Bui, N. Sunny and N. Mac Dowell, (2023), The prospects of flexible natural gas-fired CCGT within a green taxonomy. iScience, 26, 107382. https://doi.org/10.1016/j.isci.2023.107382

NG CCGT-CCS: Green taxonomy

To remain below 100 kg CO₂eq/MWh_{el}

21 M. Bui, N. Sunny and N. Mac Dowell, (2023), The prospects of flexible natural gas-fired CCGT
within a green toveneral iScience 26, 107389, https://doi.org/10, 1016/j.jpcj.2022, 107389 within a green taxonomy. iScience, 26, 107382. https://doi.org/10.1016/j.isci.2023.107382

Flexibility Requirements of gas power plants

Conclusions

With higher penetration of renewable energy, thermal power plants with CCS could have an important role in providing low carbon, dispatchable electricity.

Understanding the potential impact of key process decisions on the prospects of existing and future fossil fuel-based power generation under a green taxonomy will be essential to ensure a cost-effective transition to net zero.

For NG CCGT-CCS, key considerations include reducing methane leakage, high CO $_2$ capture rates, and $\hskip1cm$ minimising the impacts of start-up and shut down cycles performed by the CCGT-CCS plant.

The main advantage of hydrogen-fired CCGT is that SUSD and highly flexible operation will not increase the CO $_{2}$ emissions intensity of the electricity. However, the hydrogen fuel needs to be highly carbon efficient to meet the EU taxonomy.

In order for natural gas to play an enduring role in the transition towards net zero, managing GHG emissions from both the upstream natural gas supply chain and the conversion facility is key.

The ability to maximise the CO $_2$ capture during start-up and shut down reduces residual CO $_2$ emissions, $\hphantom{\mathrm{H}}$ thus easing the need for CO₂ removal offsets, e.g., from bioenergy with CCS or direct air capture \blacksquare technologies.

²³ and the contract of the con M. Bui, N. Sunny and N. Mac Dowell, (2023), The prospects of flexible natural gas-fired CCGT within a green taxonomy. iScience, 26, 107382. https://doi.org/10.1016/j.isci.2023.107382

Conclusions and future work

These learnings will help improve the performance of flexible operation and SUSD strategies in CO $_2$ capture $\; \;$ plants.

The data from this study will help in the development more robust process control systems, as well as improve the description of flexible and dynamic operation in process & systems models.

Future work:

- **Conclusions and future were the determings will help improve the performance of flexible operation and plants.**
The data from this study will help in the development more robust process comfiguration of flexible and dyna process control systems that could improve plant flexibility and SUSD performance, e.g., via process modelling. **Conclusions and futures:**
These learnings will help improve the performance of flexible operaplants.
The data from this study will help in the development more robust p
improve the description of flexible and dynamic ope These learnings will help improve the performance of flexible operation
plants.
The data from this study will help in the development more robust proces
improve the description of flexible and dynamic operation in process plants.

The data from this study will help in the development more robust improve the description of flexible and dynamic operation in proces
 Future work:

Investigate the impact of different process configurations an The data from this study will help in the development more robust process comprove the description of flexible and dynamic operation in process & system

Future work:

- Investigate the impact of different process configu
- Effect of different solvent types on $CO₂$ capture plant flexibility and SUSD performance.
- CCS process, also upstream/downstream effects.
- implications of different SUSD strategies.
- i.e., effect on ability to reach net zero.

iScience

Article

The prospects of flexible natural gas-fired CCGT within a green taxonomy

To request a copy of the IEAGHG report, please email tom.billcliff@ieaghg.org with the report reference number 2022-08

IEAGHG Technical Report 2022-08 **August 2022**

Start-up and **Shutdown Protocol** for Natural Gas-fired **Power Stations with** $CO₂$ Capture

M. Bui, N. Sunny and N. Mac Dowell, (2023), The prospects of flexible natural gas-fired CCGT within a green taxonomy. iScience, 26, 107382. https://doi.org/10.1016/j.isci.2023.107382

25 IEAGHG, Start-Up and Shutdown Protocol for Natural Gas-Fired Power Stations with $CO₂$
Capture", IEAGHG technical report 2022-08, August 2022.