

The prospects of flexible natural gasfired CCGT within a green taxonomy

Mai Bui, 1,2 Nixon Sunny, 1,2 Niall Mac Dowell 1,2,*

1 Centre for Environmental Policy, Imperial College London 2 Centre for Process Systems Engineering, Imperial College London

m.bui@imperial.ac.uk

U.S. DOE Net-zero Flexible Power: High Capture Rate Project Review Meeting, 6th June 2024

Flexible CCS in future electricity systems

Imperial College London

To accommodate intermittent renewables, fossil fuel power plants will need to operate flexibly.

■ Nuclear ■ CCGT ■ OCGT ■ Coal-PostCCS ■ CCGT-PostCCS ■ Wind-Onshore ■ Wind-Offshore ■ Solar ■ Interconnection

Bui, M. & Mac Dowell, N., editors, (2020). Carbon Capture and Storage, Royal Society of Chemistry, UK. <u>https://doi.org/10.1039/9781788012744</u>. Mac Dowell, N. & Staffell, I. (2016). International Journal of Greenhouse Gas Control, 48, Part 2 (Flexible operation of carbon capture plants), 327–344.

Flexibility of power plants with CCS

Rise in the frequency of start-up and shut down cycles will be expected with higher levels of intermittent renewables.

If this significantly increases CO₂ emissions, it will undermine the value proposition of CCS.

Need to ensure CO₂ emissions reduction requirements are being met.

Technology development & delivery

Brandl, P., Bui, M., Hallett, J. P. & Mac Dowell, N. (2021). *IJGGC*, 105, 103239. Danaci, D., Bui, M., Petit, C. & Mac Dowell, N. (2021). DOI: 10.1021/acs.est.0c07261 Bui, M., et al., (2020). International Journal of Greenhouse Gas Control, 93, 102879.

4 IEAGHG, 2022. Start-Up and Shutdown Protocol for Natural Gas-Fired Power Stations with CO₂ Capture", technical report 2022-08, 2022.

Pilot & demonstration studies of flexible CCS operation

Imperial College

London

Flexibility of power plants with CCS

Mac Dowell, N. & Staffell, I. (2016). International Journal of Greenhouse Gas Control, 48, Part 2 (Flexible operation of carbon capture plants), 327-344.

Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering, 74, 169–183.

Bui, M., et al., (2020). International Journal of Greenhouse Gas Control, 93, 102879.

Flexible operation of a demonstrationscale CO₂ capture plant

Equinor oil refinery (not shown)

Bui, M., Flø, N. E., de Cazenove, T., Mac Dowell, N., (2020). International Journal of Greenhouse Gas Control, 93, 102879.

Imperial College London

In 2020, we studied the

effect of start-up & shut

TCM.

down on CO₂ emissions at

7

Studying the following: (i) hot vs cold start-up, (ii) timing of steam availability (conventional vs preheat vs delayed), (iii) solvent inventory capacity, (iv) start-up solvent loading/composition.

TCM CO₂ capture facility, Mongstad Norway

Flue gas from a natural-gas fired CHP plant • Depleted flue gas Capture capacity of 80 tonnes CO₂ per day Absorber Stripper CESAR-1: 25 wt% AMP + 9 wt% PZ ٠ **Cross section dimensions** 3.55 m x 2 m 2.2 m diam. Product CO₂ (F) Flow metering Packing height (m) 18 8 (FXC) Composition Flexipac 2X Flexipac 2X Packing type (structured) (structured) Water Washes Flue gas CHP Stripper mole % component 71.6 - 78.6 N_2 Steam Absorber CO₂ 3.5 - 4.3CHP flue H₂O 2.5 - 6.3gas supply 12.5 - 14.4 \mathbf{O}_2 FC CF Condensate 0.9 - 1.0Ar **ECHNOLOGY** CHP CENTRE IONGSTAD DCC RCC mode: gas 12 mol% CO₂, captures 275 tCO₂/day

8

The 18 m packing height used for these test corresponds to the bottom two beds Total height of all three beds = 24 m

Imperial College

London

Bui, M., Flø, N. E., de Cazenove, T., Mac Dowell, N., (2020). International Journal of Greenhouse Gas Control, 93, 102879.

Combined heat and power (CHP) mode

Start-up and shut down tests at TCM

Hot start-up and shut down with 53 m³ solvent inventory 80000 0.5 8000 140 Shut down Reboiler temperature (°C), Online CO2 capture rate (%)0000000000 Start up Shut down Flue gas flow rate (Sm³/h), Solvent flow rate (kg/h) and steam flow (kg/h) Start up **Reboiler temperature** 0.45 CO₂ loading (mol CO₂/mol amine) 7000 70000 0.4 Steam flow **Rich CO**₂ loading 60000 6000 0.35 Inlet flue gas flow 50000 5000 0.3 CO₂ capture rate Lean solvent flow rate (kg CO₂/h) 0.25 40000 4000 0.2 30000 3000 CO₂ product flow CO₂ product flow Lean CO₂ loading 0.15 2000 20000 Solvent (0.1 0 10000 1000 0.05 0 0 01:00 11:00 15:48 20:36 11:00 15:00 23:00 25-11 03:00 25-11 11:00 01:24 06:12 24-11 11:00 24-11 19:00 25-11 24-11 24-11 25-11 24-11 24-11 25-11 24-11 25-11

Start up: Flue gas flow is turned on, steam flow begins earlier, at same time, or delayed.

Shut down: Flue gas flow ramps down, steam flow rate continues until target solvent loading is achieved.

Cold vs hot start-up

Key learnings

- High capture rates above 90% is techno-economically feasible (at steady state).
- During dynamic operation, 90% capture rate is feasible with load following regimes (e.g., ramp up/down) and hot start-up and shut down.
- During cold start-up and shut down, CO_2 capture rates can reduce to 50% or lower.
- Increased start-up and shut down cycles could increase CO₂ emissions of a CCGT significantly.

	Zero emissions inten	sity steam	With an NG auxiliary boiler for SUSD		
82 min start-up (SU) combined with	Cumulative specific reboiler	Cumulative CO ₂	Cumulative specific	Cumulative CO ₂	
shut down (SD)	duty (MJ/kg CO ₂)	captured (%)	reboiler duty (MJ/kg CO ₂)	captured (%)	
Cold SU 53 m ³ & SD	8.15	80.0	12.42	52.5	
Cold SU 42 m ³ & SD	8.51	66.3	13.04	43.3	
Hot SU 53 m ³ & SD	6.06	97.3	7.26	81.2	
Hot SU 42 m ³ & SD	5.94	96.5	6.93	82.9	
Hot SU 42 m ³ delayed steam & SD	6.17	67.7	7.35	56.8	

Bui, M., et al., (2020). International Journal of Greenhouse Gas Control, 93, 102879.

IEAGHG, 2022. Start-Up and Shutdown Protocol for Natural Gas-Fired Power Stations with CO2 Capture", technical report 2022-08, 2022.

The EU green taxonomy

Provides financial firms guidance on which activities qualify as being "green".

Technology-agnostic emissions threshold of 100 kg CO_2 eq/MWh for electricity generation, heat production and cogeneration of heat and electricity.

For hydrogen production, the lifecycle GHG emissions threshold needs to be lower than 3 tCO₂ eq/t H_2 , which favours green and blue hydrogen.

EU taxonomy for sustainable activities, https://finance.ec.europa.eu/sustainable-finance/toolsand-standards/eu-taxonomy-sustainable-activities en

FoSDA (2021). Taxonomy Projects Around the World (Future of Sustainable Data Alliance). https://futureofsustainabledata.com/taxomania-an-international-overview/.

Imperial College Carbon capture & storage: Green taxonomy London

To determine the eligibility of a combined cycle gas turbine (CCGT) power plants within any future sustainable green taxonomy.

Evaluated the effect of the following factors on the CO₂ intensity of electricity generation by a CCGT power plant:

- Natural gas supply chain emissions;
- CO₂ capture rate;
- Switching to blue hydrogen;

storage

• Number and type (e.g., cold vs hot) of start-up and shut down cycles.

At steady state operation, a CCGT-CCS plant using UK gas would need to capture 82.5% of the CO_2 to meet the 100 kg CO_2 eq/MWh_{el} criteria.

The steady state CO_2 intensity of a CCGT-CCS using UK gas with a 90% capture rate is **75.2 kg CO_2eq/MWh_{el}**.

Natural gas CCGT-CCS

Carbon footprint of CCGT-CCS (kg CO₂, eq/MWh)

UK supply chain carbon footprint of natural gas = $4.9 \text{ kg CO}_2 \text{eq/GJ}$ LHV (Wernet et al. 2019)

Using UK natural gas for SMR retrofitted with CCS and capturing 90% CO_2 to produce hydrogen for a steady state CCGT results in a CO_2 intensity of **103 kg CO₂ eq/MWh_{el}**.

To satisfy the green taxonomy, need to use: (i) >91% CO_2 capture rate, (ii) reduce natural gas supply chain emissions, or (iii) use green hydrogen.

Assuming a CO_2 capture rate of 95% could achieve 80 kg CO_2 eq/MWh_{el} with a blue hydrogen-CCGT.

Hydrogen CCGT-CCS

Carbon intensity of blue hydrogen-CCGT (kg CO₂eq/MWh)

Gross electricity supply and average annual capacity factor of UK gas-CCGT plants

Imperial College London

https://www.gov.uk/government/statistics/electricity-chapter-5-digest-of-united-kingdom-energy-statistics-dukes

Flexibility Requirements of gas power plants

		OCGT	Recips	CCGT
Efficiency	%	<40%	<40%	<63%
Plant size	MW	1 – 299	5 – 49	500 to 2500
Location / scale		Utility or industrial, centralised or decentralised	Industrial	Centralised / utility
Operating mode		Peaking	Peaking	Baseload / shifting
Number of starts	#	350 – 700	350 - 700	50 - 300
Hours per year	hrs/yr	500 - 2000	500 - 2000	4000 - 8500
Start time to min load	mins	5 – 10	3 – 4	20 – 90
Start time to max load	mins	20 – 30	6 – 10	60 – 180
CCS connection				
Plant retrofit		\otimes	8	
Plant new build		٢		\odot

Source: GHD, (2022). UKCCSRC webinar.

Effect of start-up & shut down on CCGT-CCS emissions

The EU taxonomy proposes an overarching, technology-agnostic emissions threshold of 100 kg CO₂ eq/MWh for electricity generation, heat production and co-generation of heat and electricity.

M. Bui, N. Sunny and N. Mac Dowell, (2023), The prospects of flexible natural gas-fired CCGT within a green taxonomy. iScience, 26, 107382. https://doi.org/10.1016/j.isci.2023.107382 19

Effect of start-up & shut down on CCGT-CCS emissions

The EU taxonomy proposes an overarching, technology-agnostic emissions threshold of 100 kg CO₂ eq/MWh for electricity generation, heat production and co-generation of heat and electricity.

As the number of SUSD cycles increases, the CO_2 emissions intensity becomes increasingly higher, and the capacity factor reduces. Higher CO_2 capture rates ensures that taxonomy emissions threshold can be met during flexible operation.

M. Bui, N. Sunny and N. Mac Dowell, (2023), The prospects of flexible natural gas-fired CCGT within a green taxonomy. iScience, 26, 107382. https://doi.org/10.1016/j.isci.2023.107382 20

NG CCGT-CCS: Green taxonomy

To remain below 100 kg CO₂eq/MWh_{el}

	Number of start-up and shut down cycles		
90% capture @ steady state	NG auxiliary boiler	Zero emissions aux boiler	
Cold SUSD (min duration)	221	311	
Cold SUSD (max duration)	102	153	
Hot SUSD (min duration)	No limit	No limit	
Hot SUSD (max duration)	291	No limit	
	Number of start up and shut down evelop		
	Number of start	up and shut down syclos	
	Number of start	-up and shut down cycles	
95% capture @ steady state	Number of start NG auxiliary boiler	-up and shut down cycles Zero emissions aux boiler	
95% capture @ steady state Cold SUSD (min duration)	Number of start NG auxiliary boiler 328	-up and shut down cycles Zero emissions aux boiler No limit	
95% capture @ steady state Cold SUSD (min duration) Cold SUSD (max duration)	Number of start NG auxiliary boiler 328 166	-up and shut down cycles Zero emissions aux boiler No limit 232	
95% capture @ steady stateCold SUSD (min duration)Cold SUSD (max duration)Hot SUSD (min duration)	Number of start NG auxiliary boiler 328 166 No limit	-up and shut down cycles Zero emissions aux boiler No limit 232 No limit	

M. Bui, N. Sunny and N. Mac Dowell, (2023), The prospects of flexible natural gas-fired CCGT within a green taxonomy. iScience, 26, 107382. https://doi.org/10.1016/j.isci.2023.107382 21

Flexibility Requirements of gas power plants

		OCGT	Recips	CCGT
Efficiency	%	<40%	<40%	<63%
Plant size	MW	1 – 299	5 – 49	500 to 2500
Location / scale		Utility or industrial, centralised or decentralised	Industrial	Centralised / utility
Operating mode		Peaking	Peaking	Baseload / shifting
Number of starts	#	350 – 700	350 - 700	50 - 300
Hours per year	hrs/yr	500 - 2000	500 - 2000	4000 - 8500
Start time to min load	mins	5 – 10	3-4	20 – 90
Start time to max load	mins	20 – 30	6 – 10	60 – 180
CCS connection				
Plant retrofit		\otimes	8	
Plant new build				\odot

Conclusions

With higher penetration of renewable energy, thermal power plants with CCS could have an important role in providing low carbon, dispatchable electricity.

Understanding the potential impact of key process decisions on the prospects of existing and future fossil fuel-based power generation under a green taxonomy will be essential to ensure a cost-effective transition to net zero.

For NG CCGT-CCS, key considerations include reducing methane leakage, high CO₂ capture rates, and minimising the impacts of start-up and shut down cycles performed by the CCGT-CCS plant.

The main advantage of hydrogen-fired CCGT is that SUSD and highly flexible operation will not increase the CO_2 emissions intensity of the electricity. However, the hydrogen fuel needs to be highly carbon efficient to meet the EU taxonomy.

In order for natural gas to play an enduring role in the transition towards net zero, managing GHG emissions from both the upstream natural gas supply chain and the conversion facility is key.

The ability to maximise the CO_2 capture during start-up and shut down reduces residual CO_2 emissions, thus easing the need for CO_2 removal offsets, e.g., from bioenergy with CCS or direct air capture technologies.

Conclusions and future work

These learnings will help improve the performance of flexible operation and SUSD strategies in CO₂ capture plants.

The data from this study will help in the development more robust process control systems, as well as improve the description of flexible and dynamic operation in process & systems models.

Future work:

- Investigate the impact of different process configurations and process control systems that could improve plant flexibility and SUSD performance, e.g., via process modelling.
- Effect of different solvent types on CO₂ capture plant flexibility and SUSD performance.
- Study dynamic interactions between the power plant and CCS process, also upstream/downstream effects.
- Techno-economic analysis to understand the cost implications of different SUSD strategies.
- Understand the impact of SUSD cycles at a systems scale, i.e., effect on ability to reach net zero.

iScience

Article

The prospects of flexible natural gas-fired CCGT within a green taxonomy

To request a copy of the IEAGHG report, please email tom.billcliff@ieaghg.org with the report reference number 2022-08

IEAGHG Technical Report 2022-08 August 2022

Start-up and Shutdown Protocol for Natural Gas-fired Power Stations with CO_2 Capture

M. Bui, N. Sunny and N. Mac Dowell, (2023), The prospects of flexible natural gas-fired CCGT within a green taxonomy. iScience, 26, 107382. https://doi.org/10.1016/j.isci.2023.107382 25

IEAGHG, Start-Up and Shutdown Protocol for Natural Gas-Fired Power Stations with CO_2 Capture", IEAGHG technical report 2022-08, August 2022.