CORVETECH.

Bench Scale Test of a Polyethyleneimine Monolith Carbon Capture Process for NGCC Point Sources DE-FE0032138

Dr. Christopher Bertole (PI)

Net-zero Flexible Power: High Capture Rate Project Review Meeting

Delta Hotel Philadelphia Airport - June 6-7, 2024

June 6, 2024

CORMETECH 01 **02** Technology Background **Project Overview** 03 **Progress and Current Status** 04 **Discussion Points** 05

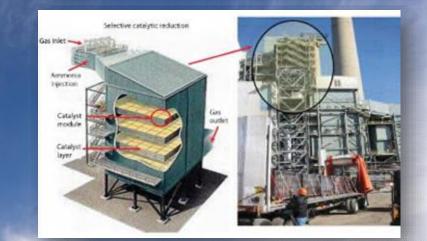
CORMETECH: Environmental Catalysts, Adsorbers

3

Industries Served

Global Installed Base of ~400,000 MW

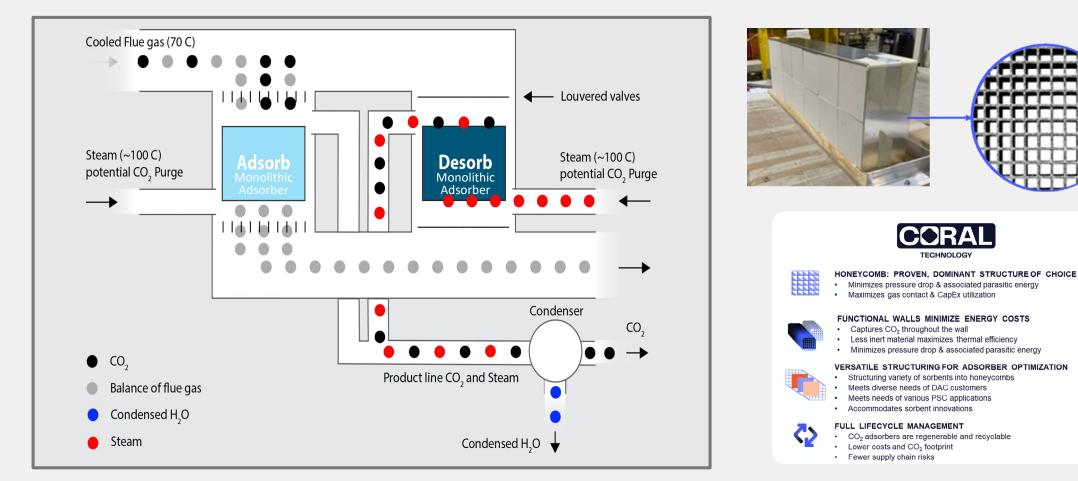
Natural Gas & Hydrogen Combined Cycle Power Plant


We work at large scale across multiple industries

Large Reciprocating Engines

Refinery/Petrochemical

Coal-Fired Power Plant ~ 1 million pounds of catalyst



Heavy Industrial Processes

Technology Background

PSC Process Overview

Cyclical, two-step process, centered on the solid monolith adsorber engine: (1) CO_2 adsorption from flue gas; (2) CO_2 collection by steam-assisted desorption.

Sorbent Agnostic: Various sorbents and continuous R&D improvements in sorbent and structuring technology can easily be incorporated into this PSC process.

Technology Background

CORMETECH Monolithic NGCC PSC Process

\checkmark
\checkmark

Technology Background

Scale-Up Approach

CC System

SCR System Experience PSC System Patent Pending Low Pressure Drop **Adsorber Modules Functional Wall Honeycomb Catalyst** Modular Design HRSG w/ SCR From Gas Turbine **CO** Catalyst HRSG SCR or Multifunction Catalyst

Project Overview

Bench Scale Test of a Polyethyleneimine Monolith Carbon Capture Process for NGCC Point Sources (DE-FE0032138)

- Three years total period, in three budget periods.
- Total Federal Share = \$2,500,000.
- Cost share ~ 20%.

Project Team

CORMETECH.

DOE Federal Project Manager: Mariah Young. DOE Award Administrator: Mark Solomon

00

Project Objectives

- Develop and validate a high performance, lower cost integrated process for NGCC point source CO₂ capture incorporating an oxide monolith + amine structured contactor (achieve TRL 6).
- Refine the process model with experimental data (for capture performance and accelerated life-cycle tests performed under relevant process conditions) collected during the project to optimize the process prior to the bench-scale system test and to support the techno-economic analysis.
- Refine the process techno-economic analysis, with multiple stakeholder inputs, to outline the roadmap towards achieving a 20% cost reduction with the new integrated process relative to the NETL benchmark carbon capture process.

Project Steps – BP1 and BP2

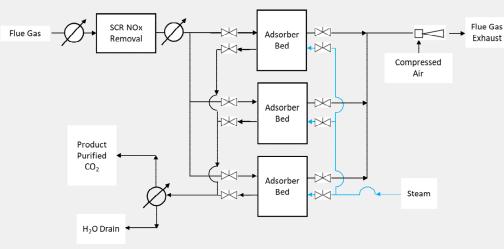
Decision Point	Date	Success Criteria	
Completion of BP1	1/31/2023	 PEI durability meets specified target before adsorber amine regeneration [i.e., adsorber can still achieve the carbon capture efficiency goal (95%) and CO₂ purity goal (95%)]. Fixed price (±10%) and process unit delivery timing established. 	
Completion of BP2	1/31/2024	 Capacity of durability optimized PEI-monolith meets specified target for PSC conditions. Process optimized to meet and exceed carbon capture efficiency goal (95%) and CO₂ purity goal (95%) in bench test. NCCC Technology Collaboration Agreement with letter indicating acceptance of hazard review and design. FAT complete and unit ready to ship to NCCC site. 	× × × ×

Project Steps – BP3

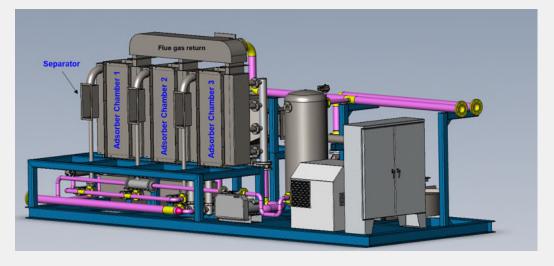
BP3 activities (2/1/2024 - 1/31/2025; in Tasks 8 & 9)

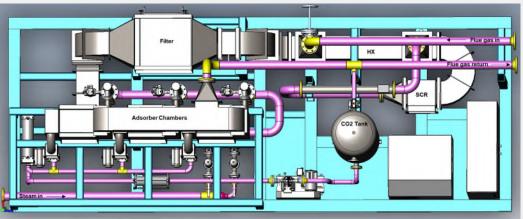
• Complete the test campaign for the bench-scale IPU at NCCC.

- Demonstrate a minimum of one-month continuous, steady state operation achieving >95% carbon capture efficiency and >95% CO_2 purity.
- Test the impact of dynamic operation on system performance (e.g., trip conditions, and quick start-up and shutdowns).
- Assess the impact of NOx and SOx on the PEI monolith durability.
- Complete the TEA, LCA, and Technology EH&S Risk Assessment.


Decision Point	Date	Success Criteria
Project Completion	1/31/2025	 >95% carbon capture efficiency and >95% CO₂ purity demonstrated for minimum 1-month continuous operation. Impact of flue gas contaminants (NOx, SOx) on system performance / durability quantified, to yield <20% adsorber degradation. The TEA/LCA show advantages of novel PSC system and road map towards 20% reduction in carbon capture cost relative to the NETL standard CANSOLV system. EH&S risk assessment shows no issues for commercial deployment.

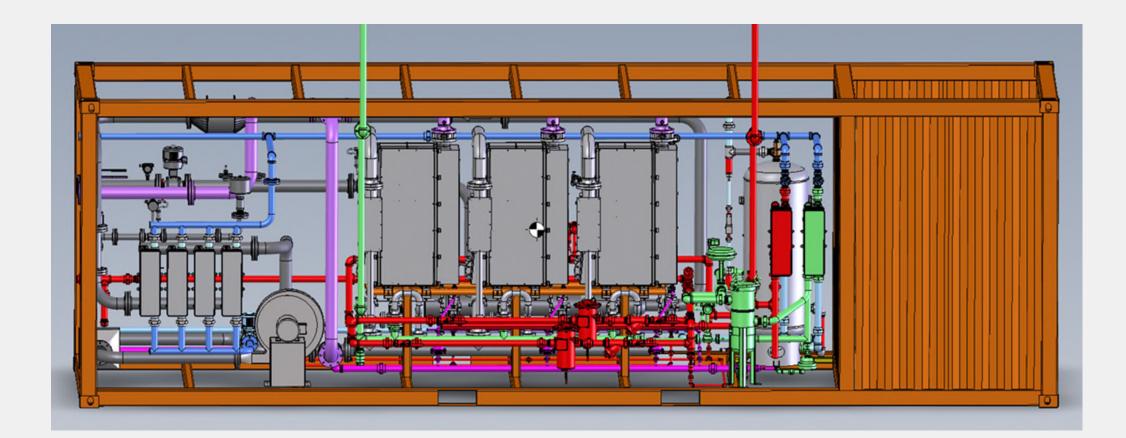
BP1 Task 3


Basic Engineering of the Integrated Process Unit


~1 ton/day CO₂ production rate.

Block Diagram of IPU Layout

Three adsorber beds for test flexibility on adsorb/desorb times (1:1, 1:2, 2:1).



BP2 Task 4

Detailed Engineering of the IPU

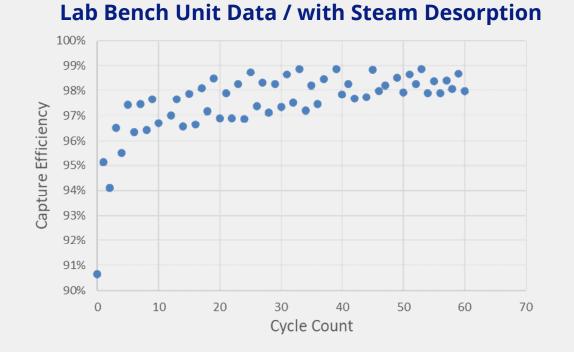
PATHFINDER™ Point Source Capture (PSC) Integrated Process Demonstration Unit (IPU)

Fabrication complete at MERTEK

Loading for transport to NCCC

PATHFINDER[™] Point Source Capture (PSC) Integrated Process Demonstration Unit (IPU)

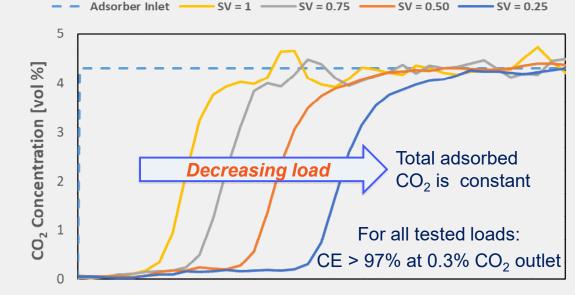
Arrival at NCCC and unloading in bench bay.


Installation currently in progress!

Unit commissioning starts in late June 2024. Test campaign completion by January 2025.

95% Capture Efficiency and Beyond

- 95% CE for 1-month continuous operation is goal of NCCC test campaign.
- Technology can achieve > 95%. <u>Scale-up considerations are important</u>:
 - SV, bypass/leakage, CO₂ purity. No moving parts except for inlet/outlet dampers.
 - Adsorber isotherms, and degradation rate (NO_2, SO_2, O_2) . Servicing and regeneration.



Lab Bench Unit / Two Chamber Design

 \circ^{O}_{O}

Flexible Operation

- PSC system is passive for adsorption: no sorbent or reagent injection.
 - Steam desorption cycle step is "independent" from the adsorption cycle step.
 - SUSD and transient load operation are thus more straightforward.

Lab Core Unit Data

Adsorption Step Time [minutes]

Lab Core Unit / One Chamber Design

Thank You

CORMETECH.

×

Dr. Christopher Bertole

www.Cormetech.com bertolecj@cormetech.com