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Objectives to be reached during this project

1. Establish state-of-the-art oxygen electrode materials

2. Stabilize Ni-YSZ hydrogen electrode against Ni migration - utilize infiltration

3. Quantify the effect of cell & stack design on durability

4. Develop and quantify cost-effective and scalable manufacturing

Grant Program Activity
Budget

Federal Non-Federal Total

Budget Period 1 $796,976 $203,754 $1,000,730

Budget Period 2 $798,961 $197,689 $996,650

Budget Period 3 $794,730 $196,226 $990,956

Totals $2,390,667 $597,669 $2,988,336
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SOLUTIONS AT EACH LEVEL DESIGNED TO BE PORTABLE TO MANY SYSTEM CONFIGURATIONS
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AIR ELECTRODE OPTIMIZATION USING NICKELATE MATERIALS

Cell Level
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Utilize symmetric cell to iterate particle size ratio between 

pure ionic and mixed ionic/electronic conductors
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AIR ELECTRODE OPTIMIZATION USING NICKELATE MATERIALS
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NICKELATE MATERIALS & REDUCED NICKEL MIGRATION

Cell Level
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REDUCED NICKEL MIGRATION THROUGH GDC PINNING
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PERFORMANCE IMPROVEMENT WITH GDC INFILTRATION

Cell Level

Oxygen Electrode Investigations
(Nickelates)

Fuel Electrode Investigations
(Nickel migration)
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Ohmic 

Resistance 

(Ω.cm2)

Polarization 

Resistance 

(Ω.cm2)

As sintered 0.17 0.32

Infiltrated 0.11 0.17

Infiltration of GDC into Ni/YSZ 

structure results in a reduction of both 

ohmic and polarization resistance

Effect is more apparent in electrolysis 

mode than in fuel cell mode
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PERFORMANCE IMPROVEMENT STABLE IN MODE SWITCHING

Cell Level

Oxygen Electrode Investigations
(Nickelates)

Fuel Electrode Investigations
(Nickel migration)
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Cell performance quite stable after 800 hrs of continuous 

cycling between SOFC and SOEC operation modes

6hr SOEC, 18hr SOFC
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Stack Level
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Nickelate – Cr interconnect interactions

Simulation for SG Ceramic Interconnect A (SGCI-A)
•Electronic conductivity vs. T 

•Electronic conductivity vs. PO2 

•Electronic conductivity vs. doping element concentration 

Simulation for the role of dopants in SG Ceramic Interconnect B 

(SGCI-B)
•Electronic conductivity of 2-4 doping elements

•Recommendations
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Stack Level
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Nickelate – Cr interconnect interactions

Simulation for SG Ceramic Interconnect A (SGCI-A)

•  Doping of La into STO results in the closure of the band gap, causing the 

material to transition into a conductor.

• Under the reducing condition, the electronic conductivity will slightly drop. 

SGIC-A
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Stack Level
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Nickelate – Cr interconnect interactions

Simulation for SG Ceramic Interconnect B (SGCI-B)

•  Modeled both 25% and 50% B-site dopants

•  Determined insulating vs semiconducting compositions

SGIC-B1 (25% A 

and B site dopants)

SGIC-B2 (25% A site dopants 

and 50% B site dopants)
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Stack Level
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Operated ceramic interconnect in 
SOFC, SOEC and rSOC modes
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Stack Level
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Nickelate – Cr interconnect interactions

Example ohmic resistance response to switching mode operation

•  Expected small changes in resistance due to changing gas conditions  

•  Degradation mainly took place in SOEC mode

• Generally stable operation over 1600 hrs

• Resistance value small compared to total resistance of the cell
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ROLL TO ROLL SUBCOMPONENT FABRICATION OF CONSISTENT, THIN LAYERS

Scale Up

Solution 
integration and 

stack testing

Techno-economic analysis

Anode

Supported

Stack

Supported

Simultaneous, multi-layer casting is being evaluated to scale 
co-sintered cell design.

• Multiple ceramic slurries are layered onto a substrate simultaneously during casting.

• Vastly improves quality and efficiency of casting process.

• This method will be used to prove scalability of all-ceramic stack design and provide 
samples to partner nodes.

• LNO-containing layers will be included as a part of this strategy as soon as is possible.
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Trial results – excellent control of film homogeneity and microstructure

• Stable coating – good separation of 3 layers, smooth coating

• Confirmation of fluid handling approach and workflow strategy

• Layer thickness & architecture were on target

• High quality interfaces and degree of uniformity

Target Design Multilayer Wet Coating Laminated Green Structure Final Sintered Microstructure
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MANIFOLDING 8X8 CM, 4-CELL STACK USING CERAMIC MANIFOLD TO ELIMINATE EFFECT OF CHROME VAPOR

Scale Up

Solution 
integration and 

stack testing

Techno-economic analysis
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Co-sintered All-Ceramic Stack Manifolded Stack

• Stack is planarized and glass 

sealed before manifolding 

• Placed in manifold with 

gaskets, platinum mesh, and 

sapphire plate

• Ceramic hardware used to 

secure and deliver gas streams
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RESULTS FROM PREVIOUS GENERATION STACK
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• OCV was a little lower than theoretical at 3.83V, sealing imperfection

• I-V curve scanning from 0-0.3 A/cm2, as expected performance based 

on button cells

• Performance slightly improves during SOFC mode but degrades a little 

bit under SOEC mode.
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SEM ANALYSIS POST TESTING, 1400 HRS
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Fuel electrode

YSZ

GDC

Air electrode

electrolyte interfaces 

Interconnect B

Interconnect A

Air electrode

Fuel electrode

interconnect interfaces 

H2

Air

Four locations observed corresponding to 

extreme gas/current density 

• No locational effects noticed

• No cracking or delamination detected at 

the electrolyte or interconnect



Achievements

• Optimized the oxygen electrode particle size ratios resulting in reduced resistance

• Developed a simple technique to quantify microstructural changes due to Ni migration

• Improved performance and durability in mode switching operation

• Developed a robust, first principles model of titinate ceramic interconnect

• Measured effect of high water vapor of SOEC mode operation on ceramic interconnect

• Developed a simultaneous multi-layer roll to roll process enabling thin and low-cost production

• Produced 4-cell stacks and tested performance in mode switching operation

Next Steps

• Produce full cells with optimized particle size distribution

• Move optimized air electrode microstructure to stack level production

• Test optimized stack in mode switching 

• Utilize performance data for system level performance and cost modeling
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