

DE-FE0031972

Reversible SOFC-SOEC Stacks Based on Stable Rare-Earth Nickelate Oxygen Electrodes

Dr. John Pietras¹, Dr. Srikanth Gopalan², Dr. Yu Zhong³ Dr. Wenyuan Li⁴, Dr. Xin Qian¹, Mr. Brian Oistad¹, Mrs. Isabelle Jones¹ ^{1 Saint-Gobain} ^{2 Boston University} ^{3 Worcester Polytechnic Institute} ^{4 West Virginia University}

FECM/NETL Spring R&D Project Review Meeting, April 23-25, 2024

REVERSIBLE SOFC-SOEC STACKS BASED ON STABLE RARE-EARTH NICKELATE OXYGEN ELECTRODES: DE-FE0031972

Objectives to be reached during this project

- 1. Establish state-of-the-art oxygen electrode materials
- 2. Stabilize Ni-YSZ hydrogen electrode against Ni migration utilize infiltration
- 3. Quantify the effect of cell & stack design on durability
- 4. Develop and quantify cost-effective and scalable manufacturing

Budget **Grant Program Activity** Federal Non-Federal Total **Budget Period 1** \$796,976 \$203,754 \$1,000,730 Budget Period 2 \$798,961 \$197,689 \$996,650 **Budget Period 3** \$794.730 \$196,226 \$990,956 **Totals** \$2,390,667 \$597,669 \$2,988,336

Acknowledgement

Ln₂NiO₄ Air Electrode

SAINT-GOBAIN

FOCUS ON STACK AND REVERSIBLE OPERATION MODE ISSUES

SOLUTIONS AT EACH LEVEL DESIGNED TO BE PORTABLE TO MANY SYSTEM CONFIGURATIONS

CELL LEVEL MICROSTRUCTURE OPTIMIZATION

AIR ELECTRODE OPTIMIZATION USING NICKELATE MATERIALS

Utilize symmetric cell to iterate particle size ratio between pure ionic and mixed ionic/electronic conductors

CELL LEVEL PARTICLE SIZE DESIGNED FOR MANUFACTURABILITY

AIR ELECTRODE OPTIMIZATION USING NICKELATE MATERIALS

NICKELATE MATERIALS & REDUCED NICKEL MIGRATION

REDUCED NICKEL MIGRATION THROUGH GDC PINNING

PERFORMANCE IMPROVEMENT WITH GDC INFILTRATION

Infiltration of GDC into Ni/YSZ structure results in a reduction of both ohmic and polarization resistance

	Ohmic	Polarization
	Resistance	Resistance
	(Ω.cm²)	(Ω.cm²)
As sintered	0.17	0.32
Infiltrated	0.11	0.17

Effect is more apparent in electrolysis mode than in fuel cell mode

-0.80A/cm²

1.2V

-1A/cm²

PERFORMANCE IMPROVEMENT STABLE IN MODE SWITCHING

Cell performance quite stable after 800 hrs of continuous cycling between SOFC and SOEC operation modes

CERAMIC INTERCONNECT: AB INITIO CALCULATION OF ELECTRONIC CONDUCTIVITY

Simulation for SG Ceramic Interconnect A (SGCI-A)

- •Electronic conductivity vs. T
- •Electronic conductivity vs. PO₂
- •Electronic conductivity vs. doping element concentration

Simulation for the role of dopants in SG Ceramic Interconnect B (SGCI-B)

Electronic conductivity of 2-4 doping elementsRecommendations

80-atom SQS structures for SGCI-A

AB INITIO CALCULATION OF ELECTRONIC CONDUCTIVITY FOR THE SG CERAMIC INTERCONNECT

Simulation for SG Ceramic Interconnect A (SGCI-A)

- Doping of La into STO results in the closure of the band gap, causing the material to transition into a conductor.
- Under the reducing condition, the electronic conductivity will slightly drop.

AB INITIO CALCULATION OF ELECTRONIC CONDUCTIVITY FOR THE SG CERAMIC INTERCONNECT

Simulation for SG Ceramic Interconnect B (SGCI-B)

- Modeled both 25% and 50% B-site dopants
- Determined insulating vs semiconducting compositions

SGIC-B1 (25% A and B site dopants)

SGIC-B2 (25% A site dopants and 50% B site dopants)

Sturctures	Band gap (eV)	Electronic properties	
STO	2.34	Insulator	
LST25	none	Conductor	
LSTM25	1.18	Insulator	
LSTC25	none	Conductor	
LSTCF25	0.99	Semi-conductor	
LST25_O(reducing condition)	none	Conductor	
LSTM25_O(reducing condition)	0.85	Semi-conductor	
LSTC25_O(reducing condition)	0.14	Semi-conductor	
LSTCF25_O(reducing condition)	0.63	Semi-conductor	
LST50	none	Conductor	
LSTM50	0.58	Semi-conductor	
LSTC50	none	Conductor	
LSTF50	0.74	Semi-conductor	
LST50_O(reducing condition)	none	Conductor	
LSTM50_O(reducing condition)	0.81	Semi-conductor	
LSTC50_O(reducing condition)	0.87	Semi-conductor	
LSTF50_O(reducing condition)	0.57	Semi-conductor	

EXPERIMENTAL MEASUREMENTS ON INTERCONNECT CONDUCTIVITY

Mode	Gas to cathode	Gas to anode	Current density (A/cm2)	Duration	Performance (Ωcm ²)
SOFC	18 vol.% O_2 balanced by N_2 , 300sccm	10vol.% humid H ₂ , 90sccm H ₂ +10sccm steam	0.5 (cathode high voltage end)	~2200 h	0.1~0.15
SOFC	18 vol.% O2 balanced by N2, 300sccm	10vol.% humid H2, 90sccm H2+10sccm steam	1 (cathode high voltage end)	~200 h ~600 h	0.05~0.15
SOEC	40 vol.% O2 balanced by N2, 300sccm	20vol.% humid H2, 80sccm H ₂ +20sccm steam	-0.5 (anode high voltage end)	1000h	0.6~1
SOEC	40 vol.% O2 balanced by N2, 300sccm	20vol.% humid H2, 80sccm H2+20sccm steam	-1 (anode high voltage end)	1000h	0.1~0.3
Reversible SOFC- SOEC	Switching gas between SOFC/SOEC mode every 300h or so	Switching gas between SOFC/SOEC mode	0.5 switch to -0.5 accompanying the gas change	~2200h	0.1~0.25
Reversible SOFC- SOEC	Switching gas between SOFC/SOEC mode every 300h or so	Switching gas between SOFC/SOEC mode	1 switch to -1 accompanying the gas change	~1200h	0.05~0.1
Reversible SOFC- SOEC	Switching gas between SOFC/SOEC mode every 300h or so	Switching gas between SOFC/SOEC mode	0.3 switch to -0.3 accompanying the gas change	~1800 h	0.07~0.1
SOFC (2 nd gen interconnect)	18 vol.% O ₂ balanced by N ₂ , 300sccm	3vol.% humid H2, 97sccm H2+3sccm steam	0.3 (cathode high voltage end)	~1000 h	0.03~0.04
SOEC(2 nd gen interconnect)	40 vol.% O2 balanced by N2, 300sccm	40vol.% humid H2, 90sccm H2+10sccm steam	-0.3 (anode high voltage end)	~1000 h	0.03~0.04

fuel electrode//interconnector//oxygen electrode

Operated ceramic interconnect in SOFC, SOEC and rSOC modes

EXPERIMENTAL MEASUREMENTS ON INTERCONNECT CONDUCTIVITY

Example ohmic resistance response to switching mode operation

- Expected small changes in resistance due to changing gas conditions
- Degradation mainly took place in SOEC mode
- Generally stable operation over 1600 hrs
- Resistance value small compared to total resistance of the cell

ENABLING HIGH VOLUME STACK PRODUCTION

ROLL TO ROLL SUBCOMPONENT FABRICATION OF CONSISTENT, THIN LAYERS

Simultaneous, multi-layer casting is being evaluated to scale co-sintered cell design.

- Multiple ceramic slurries are layered onto a substrate simultaneously during casting.
- Vastly improves quality and efficiency of casting process.
- This method will be used to prove scalability of all-ceramic stack design and provide samples to partner nodes.
- LNO-containing layers will be included as a part of this strategy as soon as is possible.

Simultaneous Multilayer Coating Development

- Development Results
- Modification of slurry properties
- Very thin barrier layer possible
- Elimination of punching, stacking, lamination
- Sharp interfaces maintained
- Improved interface integrity

SUCCESSFUL SIMULTANEOUS CASTING

Trial results – excellent control of film homogeneity and microstructure

- Stable coating good separation of 3 layers, smooth coating
- Confirmation of fluid handling approach and workflow strategy
- Layer thickness & architecture were on target
- High quality interfaces and degree of uniformity

Target Design

Multilayer Wet Coating

Laminated Green Structure

Final Sintered Microstructure

STACK TESTING

MANIFOLDING 8X8 CM, 4-CELL STACK USING CERAMIC MANIFOLD TO ELIMINATE EFFECT OF CHROME VAPOR

Co-sintered All-Ceramic Stack

• Stack is planarized and glass sealed before manifolding

Manifolded Stack

- Placed in manifold with gaskets, platinum mesh, and sapphire plate
- Ceramic hardware used to secure and deliver gas streams

STACK TESTING

RESULTS FROM PREVIOUS GENERATION STACK

- OCV was a little lower than theoretical at 3.83V, sealing imperfection
- I-V curve scanning from 0-0.3 A/cm2, as expected performance based on button cells
- Performance slightly improves during SOFC mode but degrades a little bit under SOEC mode.

STACK TESTING SEM ANALYSIS POST TESTING, 1400 HRS

electrolyte interfaces

Four locations observed corresponding to extreme gas/current density

- No locational effects noticed
- No cracking or delamination detected at the electrolyte or interconnect

interconnect interfaces

Achievements

- Optimized the oxygen electrode particle size ratios resulting in reduced resistance
- Developed a simple technique to quantify microstructural changes due to Ni migration
- Improved performance and durability in mode switching operation
- Developed a robust, first principles model of titinate ceramic interconnect
- Measured effect of high water vapor of SOEC mode operation on ceramic interconnect
- Developed a simultaneous multi-layer roll to roll process enabling thin and low-cost production
- Produced 4-cell stacks and tested performance in mode switching operation

Next Steps

- Produce full cells with optimized particle size distribution
- Move optimized air electrode microstructure to stack level production
- Test optimized stack in mode switching
- Utilize performance data for system level performance and cost modeling

