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REVERSIBLE SOFC-SOEC STACKS BASED ON STABLE RARE-EARTH NICKELATE
OXYGEN ELECTRODES: DE-FE0031972

Objectives to be reached during this project
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Establish state-of-the-art oxygen electrode materials

Stabilize Ni-YSZ hydrogen electrode against Ni migration - utilize infiltration
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3. Quantify the effect of cell & stack design on durability WestVirginiaUniversity; SAINT-GOBAIN
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Develop and quantify cost-effective and scalable manufacturing
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FOCUS ON STACK AND REVERSIBLE OPERATION MODE ISSUES

SOLUTIONS AT EACH LEVEL DESIGNED TO BE PORTABLE TO MANY SYSTEM CONFIGURATIONS
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CELL LEVEL MICROSTRUCTURE OPTIMIZATION

AIR ELECTRODE OPTIMIZATION USING NICKELATE MATERIALS
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Utilize symmetric cell to iterate particle size ratio between
pure ionic and mixed ionic/electronic conductors

LNO+LDC

SDC20

N
LNO+LDC

Symmetric cell schematic

Initial - Optimized
Rp 0.24 Qecm? Rp 0.09 Q+cm?

et
LNO > LDCS0 Region o
ry \,“o’
no.1 * no.8 * no.15 no.18
Rp=0.087 Rp=0.085 Rp=0.161 Rp=0.148
no.4 no.11 no.19
Rp=0.322 Rp=0.124 Rp=0.136
no.2 no.9 no.12 no.16
Rp=0.116 Rp=0.099 Rp=0.124 Rp=0.371
no.5 no.13 no.20
Rp=0.210 Rp=0.297 Rp=0.396
no.3 no.6 no.10 no.17
Rp=0.247 Rp=0.297 Rp=0.198 Rp=0.594 LNO < LDC50 Region
no.7 no.14 no.21
Rp=0.421 Rp=0.544 Rp=0.322
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CELL LEVEL PARTICLE SIZE DESIGNED FOR MANUFACTURABILITY

AIR ELECTRODE OPTIMIZATION USING NICKELATE MATERIALS
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CELL LEVEL PERFORMANCE AND DURABILITY IMPROVEMENTS

NICKELATE MATERIALS & REDUCED NICKEL MIGRATION
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CELL LEVEL PERFORMANCE AND DURABILITY IMPROVEMENTS

REDUCED NICKEL MIGRATION THROUGH GDC PINNING
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CELL LEVEL PERFORMANCE AND DURABILITY IMPROVEMENTS

PERFORMANCE IMPROVEMENT WITH GDC INFILTRATION
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Infiltration of GDC into Ni/YSZ

structure results in a reduction of both

ohmic and polarization resistance

Polarization
Resistance | Resistance

(Q.cm?)
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Effect is more apparent in electrolysis
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CELL LEVEL PERFORMANCE AND DURABILITY IMPROVEMENTS

PERFORMANCE IMPROVEMENT STABLE IN MODE SWITCHING

Cell Level
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cycling between SOFC and SOEC operation modes
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CERAMIC INTERCONNECT: AB INITIO CALCULATION OF ELECTRONIC CONDUCTIVITY

Stack Level Simulation for SG Ceramic Interconnect A (SGCI-A)
/ \ *Electronic conductivity vs. T

*Electronic conductivity vs. PO,
*Electronic conductivity vs. doping element concentration

WestVirginiaUniversity

Simulation for the role of dopants in SG Ceramic Interconnect B

(sGCL-B)

( ) Motal IC *Electronic conductivity of 2-4 doping elements
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AB INITIO CALCULATION OF ELECTRONIC CONDUCTIVITY FOR THE SG CERAMIC
INTERCONNECT
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Simulation for SG Ceramic Interconnect A (SGCI-A)

* Doping of La into STO results in the closure of the band gap, causing the
material to transition into a conductor.
* Under the reducing condition, the electronic conductivity will slightly drop.
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AB INITIO CALCULATION OF ELECTRONIC CONDUCTIVITY FOR THE SG CERAMIC

INTERCONNECT
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Simulation for SG Ceramic Interconnect B (SGCI-B)

* Modeled both 25% and 50% B-site dopants

* Determined insulating vs semiconducting compositions

SGIC-B1 (25% A
and B site dopants)

SGIC-B2 (25% A site dopants

and 50% B site dopants)

STO Insulator

LST25 none Conductor
LSTM25 1.18 Insulator
LSTC25 none Conductor
LSTCF25 0.99 Semi-conductor
LST25_0O(reducing condition) none Conductor
LSTM25_O(reducing condition) 0.85 Semi-conductor
LSTC25_O(reducing condition) 0.14 Semi-conductor
LSTCF25_0O(reducing condition) 0.63 Semi-conductor
LST50 none Conductor
LSTM50 0.58 Semi-conductor
LSTC50 none Conductor
LSTF50 0.74 Semi-conductor
LST50_O(reducing condition) none Conductor
LSTM50_O(reducing condition) 0.81 Semi-conductor
LSTC50_O(reducing condition) 0.87 Semi-conductor
LSTF50_O(reducing condition) 0.57 Semi-conductor
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EXPERIMENTAL MEASUREMENTS ON INTERCONNECT CONDUCTIVITY
| Med  omwoateds  Gmtomeds  Curemdonsiy(Mfemd)  Duraion Perormanco(dum) |
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Nickelate — Cr interconnect interactions
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SOEC

Reversible SOFC-
SOEC

SOFC (2" gen
interconnect)
SOEC(2™ gen

interconnect)

10vol.% humid H,,

18 vol.% O, balanced by N,, 300sccm  gpccem H,+10sccm steam 0.5 (cathode high voltage end) ~2200 h 0.1~0.15
10vol.% humid H2 ~200 h
0y '] ) N
18 vol.% 02 balanced by N2, 300sccm 90scem Ha+10scem steam 1 (cathode high voltage end) o 5

Switching gas between SOFC/SOEC Switching gas between

0.5 switch to -0.5 accompanying

mode every 300h or so SOFC/SOEC mode the gas change ~2200h 0.170.25
Switching gas between SOFC/SOEC Switching gas between 1 switch to -1 accompanying the
mode every 300h or so SOFC/SOEC mode gas change 1200h 0.05~0.1
Switching gas between SOFC/SOEC Switching gas between 0.3 switch to -0.3 accompanying
~1800 h 0.07~0.1
mode every 300h or so SOFC/SOEC mode the gas change
3vol.% humid H2, .
18 vol.% O, balanced by Nj, 300scem  g7c . H2+3scem steam  9-3 (cathode high voltageend) ~1000 h 0.03~0.04
40vol.% humid H2, .
40 vol.% 02 balanced by N2, 3005ccm  goscem H2+10scem steam  0-3 (@nede high voltageend)  ~1000 h 0.03~0.04

fuel electrode//interconnector//oxygen electrode

Hy H0 ) I ¢ O, N,

Operated ceramic interconnect in
SOFC, SOEC and rSOC modes
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EXPERIMENTAL MEASUREMENTS ON INTERCONNECT CONDUCTIVITY
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Example ohmic resistance response to switching mode operation

Expected small changes in resistance due to changing gas conditions
Degradation mainly took place in SOEC mode
Generally stable operation over 1600 hrs

Resistance value small compared to total resistance of the cell
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ENABLING HIGH VOLUME STACK PRODUCTION

ROLL TO ROLL SUBCOMPONENT FABRICATION OF CONSISTENT, THIN LAYERS
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Techno-economic analysis

Simultaneous, multi-layer casting is being evaluated to scale
co-sintered cell design.

Multiple ceramic slurries are layered onto a substrate simultaneously during casting.
Vastly improves quality and efficiency of casting process.

This method will be used to prove scalability of all-ceramic stack design and provide
samples to partner nodes.

LNO-containing layers will be included as a part of this strategy as soon as is possible.

Simultaneous Multilayer Coating Development

Development Results

* Modification of slurry properties

» Very thin barrier layer possible

+ Elimination of punching, stacking, lamination
+ Sharp interfaces maintained

* Improved interface integrity

SAINT-GOBAIN



SUCCESSFUL SIMULTANEOUS CASTING A

R&D CENTERS

BY SAINT-GOBAIN

Trial results — excellent control of film homogeneity and microstructure

» Stable coating — good separation of 3 layers, smooth coating
e Confirmation of fluid handling approach and workflow strategy
e Layer thickness & architecture were on target

e High quality interfaces and degree of uniformity

Target Design Multilayer Wet Coating Laminated Green Structure Final Sintered Microstructure

Top layer (2.5 um)
Middle layer (2.9 um)

Bottom!ayer (10.7 um)

Saint-Gobain Confidential & Proprietary SAINT-GOBAIN RESEARCH NORTH AMERICA SAINT-GOBAIN



STACK TESTING

MANIFOLDING 8X8 CM, 4-CELL STACK USING CERAMIC MANIFOLD TO ELIMINATE EFFECT OF CHROME VAPOR
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Co-sintered All-Ceramic Stack

Stack is planarized and glass
sealed before manifolding

Manifolded Stack

Placed in manifold with
gaskets, platinum mesh, and
sapphire plate

Ceramic hardware used to
secure and deliver gas streams
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STACK TESTING

RESULTS FROM PREVIOUS GENERATION STACK
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Techno-economic analysis

Voltage (V)

OCV was a little lower than theoretical at 3.83V, sealing imperfection
I-V curve scanning from 0-0.3 A/lcm2, as expected performance based

on button cells

Performance slightly improves during SOFC mode but degrades a little

bit under SOEC mode.
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Stack in SOFC/SOEC reversible mode measured at 800C
wet 50H /SONz with 3 vol.% steam vs. dry air (SOFC mode)

wetH, with 40 vol.% steam vs. dry air(SOEC mode)
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STACK TESTING

SEM ANALYSIS POST TESTING, 1400 HRS

Scale Up
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extreme gas/current density

Solution
integration and
stack testing

* No locational effects noticed
* No cracking or delamination detected at
the electrolyte or interconnect
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SUMMARY —_—
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Achievements

* Optimized the oxygen electrode particle size ratios resulting in reduced resistance

« Developed a simple technique to quantify microstructural changes due to Ni migration

* Improved performance and durability in mode switching operation

« Developed a robust, first principles model of titinate ceramic interconnect

« Measured effect of high water vapor of SOEC mode operation on ceramic interconnect

« Developed a simultaneous multi-layer roll to roll process enabling thin and low-cost production
* Produced 4-cell stacks and tested performance in mode switching operation

Next Steps

» Produce full cells with optimized particle size distribution

« Move optimized air electrode microstructure to stack level production

» Test optimized stack in mode switching

 Utilize performance data for system level performance and cost modeling

i
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