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OBJECTIVE: Develop and Build an Efficient 5 kW 
Solid Oxide Electrolyzer and Demonstrate 
Operation Under Simulated, but Commercially 
Relevant Conditions

• Design and construct cells with ~300 cm2 active area
• Validate performance in short stacks
• Develop and employ optimized materials to provide the best possible 

combination of performance, lifetime and cost
• Model the performance of the cells and stack to include consideration of gas 

flow rates, cell and stack potential, current density, temperature/temperature 
distributions, and fuel utilization

• Produce and demonstrate an operation of a stack in the electrolysis mode 
under realistic conditions for, at least, 500 hours 

• Demonstrate a stack degradation rate of less than 0.4%/1000 hours
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Approach

• Develop process to fabricate ~300 cm2 active area cells using state-of-art materials
• Fabricate repeat units (cell, metal frames, and interconnects) 
• Fabricate manifolds, load frames and stack current collectors
• Assemble several short 2-5 cell stacks and perform short shakedown and acceptance tests 
• Perform short duration parametric tests as well as at least one long-term durability test over 

1000 hours to obtain realistic steam utilization and hydrogen production rates as functions of 
operated voltage/current 

• Perform post-mortem characterization using SEM, TEM and other tools, as needed
• Complete stack design validation using 2D and 3D modeling as well as structural modeling 

for reliability validation 



Cell Production of Different Sizes Established

375 cm2  parts

 Ni-YSZ electrode-supported planar cells 
have been selected as standard reference 
cells

 Developed a batch fabrication process to 
minimize the variance between separate 
cells

 Initiated the development of QA/QC 
procedures

 Successfully produced large cells to 
reduce stack part count, the number of 
interfaces in stack, and cost 
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Cassette Assembly

• Window frame: 430 SS, Al coated (sputtering) 
• Air side contact: 444 SS, Co coated (electroplating)
• Hydrogen side contact: metal Ni, uncoated
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Stack Assembly and Testing Using 
300 cm2 Active Area Cells

• Produced multiple well-sealed 
cassettes with large 300 cm2 active 
area electrode-supported SOEC cells

• Assembled and tested 16 short stacks 
of different sizes, ranging from 250 W 
to 1 kW

1 kW SOEC stacks 
with 300 cm2 active 
area cells



• Each includes heat exchanger, recycle loop, compact microchannel 
vaporizer, gas controls and automated stack control system
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Three 1-5 kW Stack Test Platforms
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Achieved 500 hours of Testing 1.3 kW 
Stacks with Large Cell Area

• 4 cells yield up to 1.3 kW stacks
• Maximum operation time was 500 hours
• Completed multiple thermal cycles
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Achieved 70% Steam Utilization Using 1.3 kW 
Stacks with Large Cell Area



Improved Current Density by Improving 
Electrical Contacts

• Modified sealing procedure to obtain 
the electrical contact at lower 
temperature, below typical sintering 
temperature 

• Achieved initial 1 A/cm2 in 90% steam 
at 50% steam utilization

• In a 2-cell stack, the steam utilization 
was 40-50%, lower than in 4-cell 
stacks, because vaporizer was not 
designed for small stacks 

• The stack was successfully thermally 
cycled with no increase in leak rate and 
the stack returned to the same power. 
Thermally cycled again then ran for 
<500 hrs in total and cooled. 
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Demonstrated Cell Reversibility in the Presence 
of High CO2 Concentrations

• Assessed cell stability in 
different CO2-H2O 
compositions with CO2 
varied from 25 to 95%

• Demonstrated syngas 
production and reversibility 
of cell operation



Higher CO2 Concentrations Lead to Increased 
Degradation in Long-Term Tests
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After 1000 hr, Coking was Observed at High CO2 
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Co-Electrolysis: 40%CO2-50%H2O-10%H2, 750oC
Electrolysis: 50%H2O-50%H2, 750oC
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Developed Model to Predict Ideal Operating 
Conditions and Critical Factors for Co-Electrolysis 

• The deep neural network (DNN) was applied to construct the reduced order models (ROM) 
for co-SOEC

• The DNN based ROM provides higher prediction accuracy than the conventional 
regression approaches

• DNN-ROM helps on understanding the response of the cell performance to the operating 
conditions
 Previously developed SOFC-MP solver were utilized as the input models
 Assuming quasi-two-dimensional, three major reactions involved

• Steam electrolysis 2𝐻𝐻2𝑂𝑂 → 2𝐻𝐻2 + 𝑂𝑂2   endothermic
• RWGS  𝐶𝐶𝑂𝑂2 + 𝐻𝐻2 ↔ 𝐶𝐶𝑂𝑂 + 𝐻𝐻2𝑂𝑂  endothermic
• methanation  3𝐻𝐻2 + 𝐶𝐶𝑂𝑂2 ↔ 𝐶𝐶𝐻𝐻4 + 𝐻𝐻2𝑂𝑂  exothermic

 A few of operating parameters are considered essential in this study:
 external voltage V
 fuel ratio: (CO2+H2O)/(CO+H2+CH4)
 CO2/H2O ratio, 
 operating temperature T
 fuel flow rate / air flow rate D. Wang et al, submitted
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Critical Factors in co-SOEC Performance

• Explore operation margin and production rate for button cells: 
 baseline condition: V=1.2V, (CO2+H2O)/(CO+H2+CH4)=4, CO2/H2O=2, T=750 ℃

• For higher CO2 consumption:
 increase cell voltage and temperature, which also enhances production rate
 increase CO2/H2O ratio
 maintain sufficient fuel ratio to suppress methane production
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Durability Could be Improved: no Break-in Period
for Cu-Doped Nickelates

• Cu-Doped Nickelates, La2Ni0.8Cu0.2O4, show no break-in period

Karki et al, ECS Transactions, 111 (6) 201-209 (2023) 
10.1149/11106.0201ecst
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Scaleup to 13 cm2 Single Cells

13 cm2, no contact layer
750oC, 1.3V, 90% steam in H2
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Oxygen Electrode Improvement
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Summary

• Assembled and tested multiple short stacks using 300 cm2 
cells

• Established baseline performance of 1 kW stack in 80% steam 
at 750oC  and demonstrated 70% steam utilization

• Thermally cycled SOEC stack with large cells
• Identified a novel oxygen electrode with improved durability
• Successfully demonstrated over 1000 hr of SOEC operation 

on CO2-H2O at elevated pressures
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