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The most efficient and low-cost option for H, production

But, many challenges still remain that must be overcome to realize the advantages.
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Project Objectives

To establish the scientific knowledge for rational design and
demonstration of a robust, highly efficient, and low-cost P-SOEC for
H, production

B To optimize proton conductivity while enhancing FE and durability of electrolyte
under electrolysis conditions

B To develop O-electrode materials with fast ionic/electronic transport, high
electro-catalytic activity, and good durability

B To develop ORR and OER catalysts with durability against various
contaminations (Cr, CO,) in high concentration of steam

B To gain insights into degradation mechanisms of cell materials and interfaces
under typical operating conditions




Target Performance

End of Project Goal:

1) Current density >1.8 A cm2 at 1.3 V in electrolysis mode at 600 °C
2) 275% roundtrip efficiency at 0.5 A cm2 in both FC/EC modes at < 650 °C
3) >500 h operation with a degradation rate of < 0.5% per 1,000 h

Proton-conducting Electrolyte Development
1) Conductivity of > 0.01 S/cm
2) lonic transference number >0.95 at 600 °C
3) Degradation rate of <0.5% per 1,000 h
O-Electrode Development
R, of < 0.2 Q-cm? at 600 °C in wet air

Catalyst Development
1) R, of < 0.15 Q-cm? at 600 °C in wet air
2) Degradation rate <0.5% per 1,000h against contaminants

Technical Approach

Accelerating discovery of materials for P-SOECs
via high-throughput computing

« Rationally select dopants for better electrode & catalyst
materials

* Predict structural/phase stability under various
conditions

 Unravel the mechanisms of electrode and electro-
catalytic processes




lllustration of the high-throughput computing framework

Step 1: High-throughput calculation
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Step 2: Decomposition Analysis
Actual composition
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Targeted Candidates

Phase2

Step 1: Calculating computational descriptors of 4,455 perovskite candidates.

Step 2: Phase stability analysis to eliminate unstable structures, thereby
obtaining accurate data for all viable candidates

Current status: Identified the structural phases and collected 6 essential
computational descriptors for all 4455 candidate materials

Proposed Proton-Involved ORR Mechanism

Phasel Phase2
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Excellent water electrolysis performance is achieved
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A Poster on Computational Studies

 Successfully calculated E, ;, p-band center, d-band
center, Ev, E,;, and d-p band hybridization using the DFT-
based high-throughput calculation.

* A novel data-driven material analysis approach,
Decomposition Analysis, is proposed to obtain the actual
structural phases for targeted candidates.

* The predicted promising materials, e.g., X-doped
BaCoO, 5, displayed outstanding performance as an
oxygen cathode for P-SOCs.
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Validation By Experiments
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* Built two ALD systems, both with an exposure mode designed to ensure uniform deposition of catalysts
across the entire surface of electrodes with high geometric complexity

* The ALD chamber features a one-body tubular design with four chemical precursor inputs, reducing
system complexity and potential risk while enabling deposition of multiple catalysts.

* Enable deposition of oxides (Pr,0;, Ce, 05, CoO, ZrO,, Nb,Os, TiO,) and metals (Pt and Ru) as well as
mixtures of different materials.
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Typical Catalyst-Coated Electrode Morphologies
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the surface texture of the underlying materials.

* The consistent morphology of as-deposited electrodes highlights the precise
layer-by-layer feature of the ALD process.

* The ALD coating may interact with the substrate materials, potentially creating
a mixed phase on the electrode's surface at operating temperatures. 13

Accomplishments: Electrolyte Development

Developed a set of new proton-conducting electrolytes
with excellent stability against high concentration of steam
and CO, while maintaining high conductivity

» Engineered co-doping and defect chemistry for improving both
conductivity and durability against high concentration of steam

« Identified co-doped proton conductors with enhanced stability

and minimal reaction towards NiO; compatibility with Ni-based
electrode is critical to performance

14




Harnessing High-throughput Computational Methods to Accelerate
the Discovery of Proton Conductors for High-Performance P-SOCs
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° Sn-doped barium cerate is predicted to exhibit favored oxygen vacancy and proton formation
energy (Ey and E};) and improved chemical stability against H,O and CO,
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Chemical Stability: Sn-doped ones are more stable than Zr-doped ones

at the same doping concentration
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Temperature (°C)
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* BSCYb exhibits lower activation energy, higher conductivity, improved hydration capability, and
enhanced ionic transference number than BZCYYb, especially at low temperatures (< 500 °C)

Cell Performance
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* Demonstrated durability for over 1,000 h when exposed to 50% H,O during electrolysis mode

* FC: peak power: 1.57 W cm?2

EC:2.62 Acm?at 1.3V at 600 °C




Accomplishments: Electrode Materials

Developed a composite electrode material (BPHYC) with high activity & durability
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« Electrode polarization resistance: < 0.2 Q cm? at 600 °C
* Good stability in humified air
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= A series of triple-conducting air electrode materials were designed, synthesized, and optimized by

rationally doping transition- and rare-earth metal ions (such as Co, Fe, and Pr, efc.) into BaHf; gY ,05_5.
= Among all of the material candidates, BPHYC shows the lowest R, surpassing other triple-conducting air
electrode materials reported to date, especially at temperatures below 600 °C (~0.17 Q-cm? at 600 °C).

ACS Energy Lett. 2023, 8, 3999.

20

10



A synergistic 3-phase, Triple-conducting Electrode

BPHYC has 3 phases: Y-doped BaCoO;_5 (BYC), PrBaCo,0;,5 (PBC),

and Y-doped BaHfO,_s; (BHY)
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Accomplishments: Catalysts Development
O-Electrodes: PrBa, ;Ca, ,C0,05,; (PBCC), Catalysts: Ruddlesden-popper phased oxide
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= Among several MIEC oxides, the Ruddlesden—Popper (RP)-phase type nickelates
Ln,NiO,4,5(Ln = lanthanide) are promising catalyst for O-electrode.

= RP-phase oxides display good tolerance against contaminants, enhancing electrode durability.
= Catalyst-coated PBCC showed lower Rp (e.g, ~0.10 vs. 0.16 Q-cm? at 600 C).
= RP-phase catalysts dramatically enhance the oxygen surface kinetics, including adsorption and

dissociation reactions for ORRs.

ACS Energy Lett. 2023, 8, 3999—-4007
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Single Cell Performance

O-Electrodes: PrBa, ;Ca, ,C0,05,5 (PBCC), Electrolytes: BaW, 43Ce( 71Ybg 26035 (BWO03)
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Single Cell Performance

O-Electrodes: PrBa, sCa; ,C0,05,5 (PBCC), Electrolytes: BZCYYb1711/BaHf, ;Yb, ,0, 5 (BHYb82)
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Single Cell Performance

0-Electrodes: Ba oPr 4Hfy 1Y 1C0p s05-5 (BPHYC), Electrolytes: BZCYYb1711
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Single Cell Performance

- Air Electrodes: Ba, ¢Prg {Hf, 1Y 1C0, 055 (BPHYC), Electrolytes: BaSn, ,Ce, ;Yb, ,05_5 (BSCYb172)
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Summary of Cell Performance

A. Cells based on Mo/W-doped Electrolytes
« Current density of ~2.3 Alcm2 at 1.3 V in SOEC mode at 600 °C
» The roundtrip efficiency of ~85% in both SOFC and SOEC modes at 650 °C
» Degradation rate of ~0.33%kh in SOFC mode at 600 °C (~500h operation)

B. Cells based on Bi-layer BHYb/BZCYYb Electrolytes
« Current density of ~2.0 A/lcm2 at 1.3 V in SOEC mode at 600 °C
» The roundtrip efficiency of ~84.7% in both SOFC and SOEC modes at 650 °C
» Degradation rate of ~0.41%kh in SOFC mode at 600 °C (~500h operation)

C. Cells based on BPHYC triple-conducting air electrodes
« Current density of ~2.5 A/lcm2 at 1.3 V in electrolysis mode at 600 °C
» The roundtrip efficiency of ~84.9% in both SOFC and SOEC modes at 600 °C
» Degradation rate of ~0.4%kh in SOFC mode at 600 °C (~500h operation)

D. Cells based on Sn-doped Electrolytes
 Current density of ~2.8 Alcm? at 1.3 V in electrolysis mode at 600 °C
» The roundtrip efficiency of ~88.9% in both SOFC and SOEC modes at 600 °C

27
Task Milestone Title & Description Demonstrated
21 Electrolyte with conductivity >0.01 S/cm in Ar (3%H,0) and ;> 0.95 at 600 °C 0.02 S/cm; 0.98
22 Bi-layer electrolyte durability: Degradation rate of <0.5% per 1000 h 0.4%
3.1 O-electrode with a polarization resistance of < 0.3 Q-cm? at 600 °C in Air (3%H,0) 0.17 Q - cm?
3.2 O-electrode optimization with a Rp < 0.2 Q-cm? at 600 °C in Air (3%H,0) 0.15Q * cm?

Complete the catalyst modification of O-electrode with Rp < 0.15 Q-cm? at 600 °C in Air (3%H,0), and the 0.10 Q = cm?
4.1 durability evaluation for at least 500 h with a degradation rate of < 0.5% per 1,000 h under the presence of : 6
contaminations (e.g., H,O and Cr). 0.49%
Complete in situ and ex situ characterization of surface morphology and surface
42  species using experimental and modeling work to determine the activity and stability Completed
of the cells in the presence of contaminants under typical operating conditions.

5.4 Demonstrate current density of >1.8 A/cm? at 1.3 V in electrolysis mode at 600 °C and 275% 2.6 Alcm?
: roundtrip efficiency at 0.5 A cm? in both SOFC and SOEC modes at < 650 °C. 80%
52 Complete durability evaluation of cells for at least 500 h with a degradation rate of 0.49% (1000h)

<0.5% per 1,000 h.

Achieved End of Project Goal:
1) Current density of > 1.8 A cmr? at 1.3 V in electrolysis mode at 600 °C
2) 2 75% roundtrip efficiency at < 650 °C
3) > 500 h operation with a degradation rate < 0.5% per 1,000 h 28
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