Efficient, Reliable, and Cost-Effective Reversible Solid Oxide Cell Technology for Hydrogen and Electricity Production

Sanghoon Lee Nguyen Minh (PI) University of California San Diego (UCSD)

2024 FECM/NETL Spring R&D Project Review Meeting

Pittsburgh, PA April 23-25, 2024

Project Overview

- <u>Project</u>: Efficient, Reliable, and Cost-Effective Solid Oxide Cell Technology for Hydrogen and Electricity Production (DE-FE0031940)
- <u>Project Objective</u>: Develop and demonstrate reversible solid oxide cell (RSOC) technology with the three main specific objectives
 - (i) To validate design, materials and process of technology for both hydrogen and electricity production
 - (ii) To demonstrate operation of the technology at relevant conditions with improved performance, reliability and endurance
 - (iii) To confirm the cost effectiveness of the technology via a techno-economic assessment of a selected application
- <u>DOE/NETL Project Manager</u>: Ms. Sarah Michalik
- Project Team:
 - UCSD
 - OxEon

RSOC Technology

- RSOC technology evaluated in this project has two key elements
 - A compact, versatile and low-cost stack architecture: arrays of cell modules in electrical parallel and series connection
 - Superior-performance, fuel-flexible reversible cells incorporating components fabricated by sputtering

Cell Configurations

 Cell Structure: (A) Substrate supported thin-film (TF) reversible solid oxide cell (RSOC) (500°-700°C) and (B) Hydrogen electrode (HE) supported RSOC (700°-800°C)

- Cell and substrate materials:
 - Electrolyte : yttria stabilized zirconia (YSZ)
 - Hydrogen electrode: Ni-YSZ
 - Oxygen electrode: lanthanum nickel cobaltite (LNC)-gadolinium doped ceria (GDC)
 - Electrolyte/electrode interlayer: GDC
 - Substrate for TF-RSOCs: Porous ceramic or metal substrates

Cell Designs - Motivation

- Two types of cell configuration
 - Demonstrate the capability of the stack design to *incorporate different* types of cell operating at different temperatures
 - Use the more advanced *HE-supported cell as a backup with regards to risk mitigation*
 - Leverage and apply the development of *sputtered high-performance* oxygen electrodes for TF cells to HE-supported cells to improve performance as compared with state-of-the-art
- LNC-GDC oxygen electrode
 - A perovskite with high electrical conductivity
 - LNC ($La_{0.97}Ni_{0.5}Co_{0.5}O_{3-\delta}$) contains *no strontium, so*
 - unwanted Sr segregation
 - unwanted Sr interactions with YSZ to form strontium zirconate
 - *interactions with volatile Cr species to form strontium chromium oxides* are avoided

Project Activities

- Application Selection and System Design and Analysis
 → completed & reported in the previous meeting
- Techno-Economic Assessment
- RSOC Cell Development
- RSOC Stack development
- Stack Operation Demonstration

Techno-Economic Assessment - Objective

- Estimate the cost of hydrogen (CoH) for hydrogen production from the system designed for the specific application
- Estimate three key cost elements in the CoH:
 - Capital cost: Stack cost and BOP (balance of plant) cost
 - Feedstock cost: Electricity, steam, heat source for heater and cooling water
 - O&M cost: Fixed cost and stack replacement cost

Techno-Economic Assessment

Stack Capital Cost Estimation

Application Assumptions

	Gas station	Replace by 10%			
		RSOC system	H_2 production	Number of RSOC cell	
Gas fueling stations (convenience store) in U.S.	150,000 (127,588) ⁽¹⁾	15,000 units	8.2 million tons/year	7.8 million cells/year ⁽²⁾	

(1) https://www.api.org/oil-and-natural-gas/consumer-information/consumer-resources/service-station-

fags#:~:text=The%20NACS%2C%20the%20association%20for,are%20convenience%20stores%20selling%20fuel.

(2) Lifetime of RSOC system is 10 years and cell size is 15cm x 15cm

Stack Cost Estimation Process

Key assumptions in stack cost estimation:

- Thin-film cells made by sputtering with anodic aluminum oxide (AAO) substrates
- UCSD stack design
- Thin-film cells manufactured in plant, other stack components procured from outside vendors/suppliers

Estimation Process for Other Stack Costs

Techno-Economic Assessment

Total Stack Cost Breakdown

	Cost (\$/kW)	
Cell material cost	150.16	79.83%
Labor cost	24.51	13.03%
Ancillary part cost	10.18	5.41%
Plants & Utilities cost	2.18	1.16%
Equipment cost	1.06	0.56%
Total	188.09	

Estimated Cost of Hydrogen (CoH)

using DOE H2A cost analysis tool

	Real Leve (per kg H2)	elized Valu	les			
Cost of Hydrogen					\$1.95	
Salvage Value	\$0.00					
Byproduct Sales	Ş-					
Feedstock Cost			\$1.12			
Fixed Operating Cost	\$0	0.33				
Yearly Replacement Costs	\$0.21					
Initial Equity Depreciable Capital	\$0.10					
Other Variable Operating Costs	\$0.06					
Debt Interest	\$0.06					
Taxes	\$0.04					
Cash for Working Capital Reserve	\$0.02					
Principal Payment	\$0.00					
Decommissioning Costs	\$0.00					
Other Non-Depreciable Capital Costs	\$0.00					
Other Raw Material Cost	\$-					
\$	- \$0	.50 \$1	.00 \$	1.50 \$2	.00	\$2.50

RSOC Cell Development - Key Activities

- Sputtering process scale-up studies
 - Demonstrate sputtering process scalability, especially for the GDC interlayer and LNC-GDC oxygen electrode, up to 15cm x 15cm
 - Improve film uniformity

- Cell performance characterization
 - Electrochemical performance testing and performance mapping
 - Durability and long-term operation evaluation

RSOC Cell Development

Sputtering Process

Sputtering Process Parameters

Key process parameters:

- Chamber pressure
- Target to substrate distance (TSD)
- Power
- Atmosphere

RSOC Cell Development

Sputtered Layer Thickness Uniformity

Deposited with Different TDS and Target Size

RSOC Cell Development

Fabrication Scaleup – LNC-GDC

10cm×10cm Electrolyte support substrate 8cm×8cm LNC-GDC deposition with mask

After 8cm×8cm LNC-GDC deposition

Sputtered Cell Scaleup – YSZ

RSOC Cell Development

Evaluation of LNC-GDC Oxygen Electrode

• LNC-GDC electrode reversibility

 Performance better than conventional LSC-GDC electrode

• Short-term stability

Electrolyte support cell of configuration LNC-GDC|GDC|YSZ|Ni-YSZ

Evaluation of LNC-GDC Oxygen Electrode with and without GDC interlayer

YSZ supported symmetric cell with the configuration of (a) LNC-GDC/GDC/YSZ/GDC/LNC-GDC and (b) LNC-GDC/YSZ/LNC-GDC

LNC-GDC electrodes without GDC interlayer showed better performance

Performance of Sputtered Cells Comparison of LNC-GDC with LSC-GDC

Extraordinarily high cell performance with LNC-GDC oxygen electrode at reduced temperatures (550°-600°C)

Performance of HE Supported Cells with LNC-GDC Oxygen Electrode

RSOC Stack Development

Testing of 3-Cell Module

Testing of 8-Cell Module – Performance Map

RSOC Stack Development

Cyclic Testing

RSOC Stack Development

Testing of Stack of Two 8-Cell Modules

Cell Parallel-Series Connection

2.5cm x 2.5cm cell 700°C 50%H₂-50%H₂O

Testing of 8-Cell Modules 10 cm x 10 cm cell

RSOC Stack Development

Testing of 8-Cell Modules 15 cm x 15 cm Cell

Cell Performance (Fuel Cell Mode with Methane)

Highlights

- Conducted techno-economic assessment and indicated potential for low stack cost and cost of hydrogen for systems incorporating sputtered cells
- Demonstrated scalability of sputtering process
- Demonstrated **superior cell performance** with **LNC-GDC** oxygen electrode
- Showed reversible operation
- Showed feasibility of the stack architecture with operation of multi-cell stacks with uniform cell performance in fuel cell and electrolysis modes

Acknowledgments

• Ms. Sarah Michalik for assistance and support

SOFC/SOEC/RSOC team at UCSD and OxEon