Development of Novel 3D Cell Structure and Manufacturing Processes for Highly Efficient, Durable and Redox Resistant Solid Oxide Electrolysis Cells

Sanghoon Lee Nguyen Minh (PI) University of California San Diego (UCSD)

2024 FECM/NETL Spring R&D Project Review Meeting

Pittsburgh, PA April 23-25, 2024

Project Overview

- <u>Project</u>: Development of 3D Cell Structure and Manufacturing Processes for Highly Efficient, Durable and Redox Resistant Solid Oxide Electrolysis Cells (DE-FE0032107)
- <u>Project Objective</u>: Develop and demonstrate highly efficient, durable and redox resistant solid oxide electrolysis cells (SOECs) with a focus on
 - (i) A cell design with the hydrogen electrode composed of two layers a 3D hydrogen electrode support layer and an exsolved perovskite hydrogen electrode active layer
 - (ii) A manufacturing scheme incorporating advanced 3D printing and photonic sintering for fabrication of the cell configuration
- DOE/NETL Project Manager: Ms. Sarah Michalik
- Project Team:
 - □ University of California San Diego (UCSD)
 - □ RocCera LLC (RocCera)
 - □ Rochester Institute of Technology (RIT)

Motivation

• 3D hydrogen electrode support for redox resistance

Exsolved perovskite hydrogen electrode active layer (high performance, improved stability, redox resistance)

Cell Design

• Design features:

- Hydrogen electrode supported configuration
- Unique hydrogen electrode concept a support layer with 3D structural geometry coupled with an exsolved perovskite active layer

LSC: Lanthanum strontium cobalt perovskite GDC: Gadolinium doped ceria YSZ: Yttria stabilized zirconia TZ: Tetragonal zirconia

Fabrication Process

• Similar to, but different from the conventional process in two areas:

- 3D printing (instead of tape casting) for the hydrogen electrode support
- Photonic sintering (instead of conventional firing) for the interlayer and oxygen electrode

Project Activities Discussed in this Presentation

- Fabrication development of 3D hydrogen electrode support by 3D printing and co-firing
- Evaluation of Ni-substituted perovskite for hydrogen electrode active layer

3D Printing

Multi-Material 3D Printing

- Use two or more deposition tools to digitally deposit the desired material at each voxel (volumetric pixel) location
- Techniques can include inkjet printing, micro-extrusion, aerosol printing, and others
- Each method imposes unique requirements on raw material formulation to ensure printability and part quality

3D Printed Support Structure

 Unique "3D checkerboard" structure made possible by multi-material 3D printing

Fabrication of 3D Hydrogen ElectrodeSupport by 3D Printing

- Inkjet Printing (Dimatix with progression to industrial grade inkjet material deposition)
 - Readily able to print multiple materials
 - Moderate feature resolution in lateral plane (high 10's of μ m), but able to print extremely thin layers (1 μ m or even less)
 - Requires low viscosity ink with relatively low solid loading
 - Nozzle clogging with non-optimized inks is a challenge
- Micro-extrusion Printing (nScrypt)
 - Able to print high solid loading viscous pastes
 - Can print multiple materials dual-extrusion configurations
 - Moderate feature resolution in lateral plane (similar to inkjet), but relatively thick layers (high 10's of μm and up)

Process Specification Development

• Ink formulations

• Printing parameters

• Drying parameters

• Firing parameters

Inkjet Printed 3D Hydrogen Electrode

Optical Surface Profilometry

the fical (mod

Characterization of Sintered Inkjet Printed Sample

Micro-Extrusion Printing

nScrypt Printing Parameters

Parameter	Value
Substrate Material	PTFE
Dispensing Tip Size (Gauge/Inner Diameter)	23 / 564 µm
Pneumatic Dispensing Pressure	7.5 psi
Layer Thickness	100 µm
Valve Open Wait Time	0.05 s
Print Speed	50 mm/s
Valve Open Speed	0.5 mm/s
Valve Close Speed	12 mm/s

5-Layer Sample

Firing and Shrinkage of Micro-Extrusion Printed Sample

As-Printed nScrypt Sample

Laser Cut Sample

Stand-Alone Laser Cut Sample Prior to Sintering (25 mm diameter)

Sintered Disk (19.5 mm diameter)

Characterization of Sintered Micro-Extrusion

Printed Samples

The sintered sample did not exhibit any cracks;

Flatness of the sintered cell

Redox Cycle Testing

3D Structure Rupture Strength Simulation

Transverse Rupture Strength Simulation

Simulated Deflection of Hydrogen Electrode Supports under Increasing Load

Synthesis of Ni-Substituted LSCF (LSCFN)

Sol-gel Process

Metal Ion Precursors

- $La(NO_3)_3 \cdot 6H_2O$
- $Sr(NO_3)_2$
- $Co(NO_3)_2 \cdot 6H_2O$
- $Fe(NO_3)_3 \cdot 9H_2O$
- Ni(NO₃)₂

Characterization of LSCFN Powder - XRD

Characterization of LSCFN Powder -FESEM

Characterization of LSCFN Powder - Conductivity

Commercial LSCF: La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-δ}

Synthesized LSCFN: La_{0.8}Sr_{0.1}Co_{0.2}Fe_{0.74}Ni_{0.06}O_{3-δ}

Reduction of New Stoichiometry LSCFN - FESEM

(La_{0.6}Sr_{0.4})_{0.9}Co_{0.2}Fe_{0.74}Ni_{0.06}O₃ (A-site deficient)

600°C A-site deficient

La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.74}Ni_{0.06}O₃ (A-site balanced)
600°C A-site balanced 700°C A-site balanced

Electrochemical Characterization of LSCFN

- Symmetrical cell AC Impedance
 - LSCFN7328 showed the least polarization resistance

22

Ni-Substituted Perovskite Hydrogen Electrode Active Layer

Blueprint for LSCFN Research

Highlights

- Fabrication of 3D hydrogen electrode supports
 - Inkjet printing and micro-extrusion processes for 3D structure fabrication
 - Demonstration of fabrication of hydrogen electrode support 3D structures
 - Demonstration of redox resistance
- Metal exsolution of substituted perovskite for hydrogen electrode active layer
 - Reversible exsolution/dissolution
 - Nickel exsolution, electrical and electrochemical characteristics

Acknowledgments

• Ms. Sarah Michalik for assistance and support

UCSanDiego RIT Rochester Institute RocCera

SOFC/SOEC/RSOC team at UCSD, RIT and RocCera