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Project Overview

Project: Development of 3D Cell Structure and Manufacturing Processes for Highly Efficient,
Durable and Redox Resistant Solid Oxide Electrolysis Cells (DE-FE0032107)

Project Objective: Develop and demonstrate highly efficient, durable and redox resistant solid

oxide electrolysis cells (SOECs) with a focus on
(i)  Acell design with the hydrogen electrode composed of two layers —a 3D hydrogen electrode support
layer and an exsolved perovskite hydrogen electrode active layer
(ii) A manufacturing scheme incorporating advanced 3D printing and photonic sintering for fabrication of
the cell configuration

DOE/NETL Project Manager: Ms. Sarah Michalik

Project Team:
O University of California San Diego (UCSD)
 RocCera LLC (RocCera)
O Rochester Institute of Technology (RIT)




Motivation

* 3D hydrogen electrode support for redox resistance
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* Exsolved perovskite hydrogen electrode active layer (high performance, improved
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Cell Design

Design features:
— Hydrogen electrode supported configuration

— Unique hydrogen electrode concept — a support layer with 3D structural geometry coupled with an exsolved
perovskite active layer

Oxygen Electrode (LSC-GDC) 50 um

Interayer (GDC) 5 pm

Electrolyte (YSZ) 10 pym

Hydrogen Electrode Active Layer
(Ni substituted perovskite-GDC) 20 pm

3D TZ Structure

Hydrogen Electrode Support Layer
(3DTZ- 3D Ni) 300 um

3D Ni-YSZ Structure

LSC: Lanthanum strontium cobalt perovskite
GDC: Gadolinium doped ceria

YSZ: Yttria stabilized zirconia

TZ: Tetragonal zirconia



Fabrication Process

* Similar to, but different from the conventional process in two areas:

- 3D printing (instead of tape casting) for the hydrogen electrode support

- Photonic sintering (instead of conventional firing) for the interlayer and oxygen electrode
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Project Activities

Discussed in this Presentation

* Fabrication development of 3D hydrogen electrode support
by 3D printing and co-firing

* Evaluation of Ni-substituted perovskite for hydrogen
electrode active layer



Fabrication Development of Hydrogen Electrode Support 3D Structure

3D Printing

 Multi-Material 3D Printing

—  Use two or more deposition tools to
digitally deposit the desired material at
each voxel (volumetric pixel) location

—  Techniques can include inkjet printing,
micro-extrusion, aerosol printing, and
others

—  Each method imposes unique
requirements on raw material
formulation to ensure printability and
part quality

* 3D Printed Support Structure

— Unique "3D checkerboard" structure
made possible by multi-material 3D
printing

Droplet — ¢




Fabrication Development of Hydrogen Electrode Support 3D Structure

Fabrication of 3D Hydrogen Electrode
Support by 3D Printing

* Inkjet Printing (Dimatix with progressionto
industrial grade inkjet material deposition)
— Readily able to print multiple materials

— Moderate feature resolution in lateral plane (high 10’s of
um), but able to print extremely thin layers (1 um or even
less)

— Requires low viscosity ink with relatively low solid loading
— Nozzle clogging with non-optimized inks is a challenge

* Micro-extrusion Printing (nScrypt)
— Able to print high solid loading viscous pastes
— Can print multiple materials dual-extrusion configurations

— Moderate feature resolution in lateral plane (similar to
inkjet), but relatively thick layers (high 10’s of um and up)




Fabricatlon Development of Hydrogen Electrode Support 3D Structure

Process Specification Development

) Printing Equipment
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* |Ink formulations I o

Aqueous Dispersion
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* Printing parameters
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Optical Surface Profilometryr

Layer Printing Strategy

Inkjet Printed 3D Hydrogen Electrode

Fabrication Development of Hydrogen Electrode Support 3D Structure
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Fabrication Development of Hydrogen Electrode Support 3D Structure

Characterization of Sintered Inkjet Printed Sample

Surface Profilometry

FESEM/EDX
/ Before Firing After Firing \

NiO-YSZ

PPN
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Fabricatlon Development of Hydrogen Electrode Support 3D Structure

Micro-Extrusion Printing

nScrypt Printing Parameters

Substrate Material PTFE
Dispensing Tip Size (Gauge/Inner Diameter) PEFALT I}

7.5 psi
100 pm
0055
50 mm/s
0.5 mm/s

5-Layer Sample




Fabrication Development of Hydrogen Electrode Support 3D Structure

Firing and Shrinkage of Micro-Extrusion
Printed Sample
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Sample Prior to Sintering (19.5 mm diameter)

(25 mm diameter)
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Fabrication Development of Hydrogen Electrode Support 3D Structure

Characterization of Sintered Micro-Extrusion
Printed Samples

NiO-YSZ-50 NiO-YSZ-60 NiO-YSZ-70 NiO-YSZ-80
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Fabrication Development of Hydrogen Electrode Support 3D Structure

Redox Cycle Testing

Conventional HE-support #B #E HF #A
Layer (No active layer) NiO 50% NiO 60% NiO 80%
> Al A — —

(g

Surface

5C/min

Surface

>

2 Redox Cycles

Cross-
section

suface Ligeens (iRl e V7 No cracks in the ATZ
T . : e N structure

mag

ATZ
Surface

15



Fabricatlon Development of Hydrogen Electrode Support 3D Structure

3D Structure Rupture Strength Simulation
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NI-Substituted Perovskite Hydrogen Electrode Actlve Layer

Synthesis of Ni-Substituted LSCF (LSCFN)

:".-:.."..-.: . @ . t‘; . m . m . LaO-Ser.lc(cl’g::F:lsl.;4Nio.osos.s

Metal ion salts Sol-gel Wet mixing 1%t Calcination 2"d Calcination
at 800°C for 4hr at 1100°C for 2hr
e Sol-gel Process * Metal lon Precursors

- La(NO,),-6H,0
- Sr(NO,),
- Co(NO,),"6H,0
- Fe(NO,);-9H,0
- Ni(NO,),



Ni-Substituted Perovskite Hydrogen Electrode Active Layer

Characterization of LSCFN Powder - XRD

— 800°C —700°C
. ' — 650°C —600°C
* Reduced LSCFN at different temperature — As-synthesized LSCFN
with 50% H,-50% H,O > | YN
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NI-Substituted Perovskite Hydrogen Electrode Actlve Layer

Characterization of LSCFN Powder -FESEM

750°C, 5% H,/Ar, 6 hr

4 Reduction !

<§e-oxidation

600°C, Air, 6 hr

Reversible Exsolution
No Trace of Exsolution




Ni-Substituted Perovskite Hydrogen Electrode Active Layer

Characterization of LSCFN Powder - Conductivity

+  Synthesized LSCFN:La, ,Sr, ,C0, ,Fe, ,2Ni; 0:0s.5
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NI-Substituted Perovskite Hydrogen Electrode Actlve Layer

Reduction of New Stoichiometry LSCFN -FESEM

(Lag 6Sr0.4)0.0€C00 2F€0 74Nig 0603 (A-site deficient) La, ¢Sro.4COq5F€g 74Nip 0603 (A-site balanced)
600°C A-site deficient 600°C A-site balanced 700°C A-site balanced




NI-Substituted Perovskite Hydrogen Electrode Active Layer

Electrochemical Characterization of LSCFN
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Ni-Substituted Perovskite Hydrogen Electrode Active Layer

Blueprint for LSCFN Research

(LagsSro)os

(LaggSro.2)o

(Lag7Sro.3)0.0

A-site stoichiometry
(LageSro.ado.

(LagsSro.s)o.s

To find reversible & best performing

LSCFN as a SOEC hydrogen A-site balanced one for best

performing material

electrode active layer

Ni 3% - (La,Sr;,)0.9C00 2Fe0.77Nig 03

Ni 6% - (La,Sr;.,)0.9C00.2F€0.74Nig 06
Ni doping ratio

Ni 10% - (La,Sry_)0.9C0q 5Feq 7Nig 1

Ni 15% - (La,Sry.,)0.9C0g 2F€0 gsNig 15

Ni 20% - (La,Sr4.)0C00 2F€g ¢Nig »
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Highlights

* Fabrication of 3D hydrogen electrode supports

— Inkjet printing and micro-extrusion processes for 3D structure
fabrication

— Demonstration of fabrication of hydrogen electrode support 3D
structures

— Demonstration of redox resistance

* Metal exsolution of substituted perovskite for
hydrogen electrode active layer

— Reversible exsolution/dissolution
— Nickel exsolution, electrical and electrochemical characteristics
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