Developing Stable Critical Materials and Microstructure for High-Flux and Efficient Hydrogen Production through Reversible Solid Oxide Cells

(Update on 2023 Research and Development)

Prof. Kevin Huang

SmartState Chair Professor and Director of Solid Oxide Fuel Cell Center

University of South Carolina

(DE-FE-0032111)

Present to 2024 FECM Spring Project Review Meeting, Pittsburgh, April 23-25, 2024

Outline

- Process optimization of air electrode BYC-LSM barrier layer free (BLF) air electrode
- Button cell (1.5 cm²) testing
- Planar 13 cm² cell making and testing
- ALD-SCT bilayer air electrode synthesis
- Multiphysics modeling
- Conclusion
- Ongoing work

About Project

Project Goal

To develop reduced temperature (\leq 700°C) ZrO₂-based SOCs technology for high-efficiency and low-cost power and H₂ production.

Tasks

- 1. Engineering barrier layer free air electrode $(Bi_{0.75}Y_{0.25})_{0.93}Ce_{0.07}O_{2-\delta}$ La_{0.8}Sr_{0.2}MnO₃ (BYC-LSM) for 650°C SOCs (USC)
- 2. Developing ALD-SCT (SrCo_{0.9}Ta_{0.1}O_{3- δ}) @LSCF-GDC bilayer AEs for 700°C SOCs (USC)
- Developing porosity-graded fuel electrode (FE) substrates and cells (USC)
- 4. Validating the developed new materials/microstructure in small and large cells (PNNL)
- 5. Developing a coupled electro-chemomechano model (USC)

LSM-BYC-ZrO₂ Chemical Compatibility

LSM-BYC

ScSZ-BYC

Phase/TEC Check Before and After Testing

AE Optimization: Porosity by PMMA

5 wt% pmma 19.5%

Fired at 800°C

10 wt% pmma 43.5%

66.8%

UNIVERSITY OF South Carolina

15 wt% pmma 57.3%

Calcining T Effect on Microstructure

Cross-section of BYC-10pmma sintering at 700, 720, 740, 760, 780, 800 °C

Top view of BYC-10pmma sintering at 700, 720, 740, 760, 780, 800 °C

Calcining T Effect on R_P

BYC skeleton	R_p (Ω cm ²)
10pmma-700 °C	0.17
10pmma-720 °C	0.15
10pmma-740 °C	0.08
10pmma-760 °C	0.09
10pmma-780 °C	0.16
10pmma-800 °C	0.47

LSM Loading Effect on R_P

LSM-BYC Full Cell Fabrication

LSM-BYC Cell Cross-Section (Pre-Testing)

UNIVERSITY OF South Carolina

2024, 361, 122962. DOI: 10.1016/j.apenergy.2024.122962.

Air, LSM-BYC | ScSZ | ScSZ-Ni, 50%H₂O-H₂

EIS Spectra

DRT profile

Air, AE|ScSZ|ScSZ-Ni, 50%H₂O-H₂

- Lowest R_P at SOFC mode
- Highest R_P at SOEC mode
- Different DRT profile between the three AEs under OCV mode

Comparison of Electrode ASRs at Different Feq Ranges

- Both samples dominated by high-f resistance. More impact in screen-printed sample
- Screen printed sample dominated by mid-low-f resistance under SOEC mode

Comparison of Ohmic and Polarization Pacific Northwest **ASRs of Different AEs**

- All three samples exhibited the similar R_o under different modes
- Infiltrated sample exhibited the lowest R_o and R_p among all three samples
- **R**_P under SOEC mode is higher than OCV and SOFC modes

NATIONAL LABORATOR

Long-term performance at 650°C

EIS and DRT Comparisons at t=0 h and 550 h

Microstructure Comparison after Testing

Independent Long-term Testing @INL

A=1.5 cm²

13 cm² Cell Making and Testing at PNNL

South Carolina

- 500 um Ni-YSZ electrode-supported cells
 - 2.5 cm x 5 cm (13 cm² active area)
- 8 um YSZ electrolyte
- 20 um Ni-YSZ active fuel electrode, Pt mesh contacts
- BYC-LSM oxygen, Au contacts
- Sealed and tested at 650°C

Performance of 13 cm² YSZ Cell

Time (hours)

13 cm² Cell by PNNL (1st, USC#1-1)

2023-10-20 S7 c46 Rectangle cell with PNNL bilayer and USC's O-electrode Sample ID: USC#1-1 Tested for 70 hours @ 1.3V, 50% steam, 650°C + 50 hours @ 1.3V, 90% steam, 700C

The air electrode is too thin.

UNIVERSITY OF South Carolina

New 13 cm² Cell Making by PNNL

To be tested at PNNL in the next few weeks

ALD-SCT Bilayer AE with Alternate Sr Precursor

The previous Sr precursor: Bis(2,2,6,6-tetramethyl-3,5-heptanedionato)strontium hydrate [Sr(TMHD)₂] The melting point is 200°C. The temperature limit for the heater is 190°C Booster is needed, the supply is not stable

The new Sr precursor: Bis(tri-isopropylcyclopentadienyl)strontium $(Sr(iPr_3Cp)_2)$ Gel-like at room temperature, the boiling point is 150°C Reactive with H₂O. High vapor pressure, only requires the regular cylinder.

SrO Growth with Sr(iPr₃Cp)₂ and CoO_x Growth

Thickness

South Carolina

Co and Sr ALD Co-growth Supercycle

64 · 62 · **Co-growth condition** ≪ 60 -Growth temperature: 220 °C Thickness Sr precursor temperature: 165 °C Sr Co precursor temperature 120 °C 58 · Previously determined Sr growth rate: 0.2 nm/cycle 56 Со Previously determined Co growth rate: 0.01 nm/cycle The cycle ratio of Sr and Co is 8:1 Со 54 -52 22000 20000 24000 26000 28000 30000

Time (sec)

R_P of all ALD-SCT Samples

UNIVERSITY OF South Carolina

Modeling Approaches

PHYSICS-BASED BUTTON CELL MODEL EIS under OCV or DC bias

✓ Synthetic EIS

- Physics-based button cell model has been • built to simulate EIS under OCV or DC bias, considering two transport pathways: 2PB vs 3PB.
- Parametric study, sensitivity and • correlation analysis have been performed. The model could fit with synthetic EIS data well.

PHYSICS-BASED MICROSTRUCTURE MODEL

Modeling Approaches

Synthetic structure from Dream.3D

Current Ratio 2PB/3PB

Electronic

1.4

1.38

1.36

1.34

1.32

1.3

1.28

Potential (V)

lonic

Potential (V)

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Ongoing Work - A New Cell Design

Phase inversion derived ScSZ+NiO substrate

Summary

- Optimized process parameter for BYC-LSM AE. Achieved $\rm R_p^{<}\,0.1\,\Omega\cdot cm^2$ at 650°C
- Achieved excellent 650°C full button cell performance at PNNL and INL
- Obtained initial performance of large cell performance at 650°C
- Developed one ALD recipe for SCT supercycle
- Developed a Multiphysics model for AE delamination behavior

Ongoing

- Making the new 2 μm electrolyte cell
- Finalizing ALD-bilayer air electrode development
- Testing ScSZ-based BLF-AE 13 cm² cell testing at PNNL

Milestone Status

	Milestones	Task	Planned	Actual	Verification method
1	Update Project Management Plan	1.1	10/10/21	complete	PMP submitted to DOE
2	Submit initial Technology Maturation Plan	1.2	12/09/21	complete	TMP submitted to DOE
3	Demonstration of barrier-layer-free OE performance: Overpotential: $\leq 0.15V@\pm 1A/cm^2@650^{\circ}C$	2.2	03/31/23	complete	STEC and Report to DOE
4	Demonstration of ALD bilayer OE performance: Overpotential: \leq 0.15V@ \pm 1A/cm ² @700°C	3.2	06/30/2024	80%	STEC and Report to DOE
5	Demonstration of optimized PI process conditions to produce quality porosity-graded open-channel HEs	4.1	06/30/2023	complete	Report to DOE
<mark>6</mark>	Demonstration of button cell (1.5 cm ²) performance specified in the Success criteria	<mark>5.1</mark>	<mark>12/31/2022</mark>	<mark>100%</mark>	Cell testing and Report to DOE
7	Demonstration of large-area cell (13 cm ²) performance specified in the Success criteria	5.4	09/09/2024	50%	Cell testing and Report to DOE
<mark>8</mark>	A multiphysics model detailing OE failure mechanisms and modes	<mark>6.0</mark>	<mark>09/09/2023</mark>	<mark>100%</mark>	Report to DOE

Acknowledgements

- We are grateful to DOE-FECM for the financial support (DE-FE-0032111).
- We thank the project manager, Dr. Evelyn Lopez and Dr. John Homer, for many useful discussion and suggestions during our monthly meetings.

